These practice problems are all on recursion.

1. This question is about the \texttt{fibonacci} function shown below.

\begin{verbatim}
def fibonacci(n):
 if n == 1 or n == 2:
 return 1
 answer = fibonacci(n-1) + fibonacci(n-2)
 return answer
\end{verbatim}

(a) Here is a picture that shows all the function calls that are made when we call \texttt{fibonacci(4)}. Specifically, the picture shows the parameters being sent into each function call (next to each arrow) and also the order in which the functions are called (inside each circle). Draw a larger version of this picture for \texttt{fibonacci(6)}. Each circle

\begin{center}
\begin{tikzpicture}
 \node (1) at (0,5) {1} ;
 \node (2) at (0,2.5) {2} ;
 \node (3) at (-1,0) {3} ;
 \node (4) at (1,0) {4} ;
 \node (5) at (0,-2.5) {5} ;

 \draw[-stealth] (1) -- (2) node [midway, above] {3} ;
 \draw[-stealth] (2) -- (3) node [midway, above] {2} ;
 \draw[-stealth] (2) -- (4) node [midway, above] {1} ;
 \draw[-stealth] (1) -- (5) node [midway, above] {4} ;
\end{tikzpicture}
\end{center}

(b) What output does the function produce, if we insert a \texttt{print n} statement as the very first line of the function and call \texttt{fibonacci(6)}. You should solve the problem by hand and not by running this function on a computer.

(c) What output does the function produce, if we insert a \texttt{print n} statement as the second-last line of the function (just above the \texttt{return} statement) and call \texttt{fibonacci(6)}. You should solve the problem by hand and not by running this function on a computer.

2. Consider the recursive implementation of the function \texttt{power} that we discussed in class (see posted code).

(a) What output does the function produce, if we insert a \texttt{print n} statement as the very first line of the function and execute the function call \texttt{power(2, 573)}.

(b) How many multiplications are performed by the function when we make the function call \texttt{power(3, 33)}?

3. Consider the recursive function \texttt{binarySearch}. Let \(L \) be the list \(3, 5, 6, 11, 100, 123, 160, 178, 1000 \).

(a) What output would the function produce if we inserted a \texttt{print left, right} as the first line of the function and called \texttt{binarySearch(L, 7, 0, 8)}? Also, write down the sequence of numbers that 7 is compared with during the course of the function execution.

(b) Same question as (a), but with function call \texttt{binarySearch(L, 1000, 0, 8)}.

4. Write a \textit{recursive} function called \texttt{recursiveLinearSearch} with the following function header:

\begin{verbatim}
def recursiveLinearSearch(L, k, left, right)
\end{verbatim}

This function searches the slice \(L[left:right+1] \) of the list \(L \) for the value \(k \) and returns \texttt{True} if the value is found; and \texttt{False} otherwise. Clearly, identify the base case(s) and recursive case(s). You cannot assume that the list \(L \) is sorted and hence you cannot do binary search.

5. Write a \textit{recursive} function called \texttt{isSorted} with the following function header:

\begin{verbatim}
def isSorted(L, left, right)
\end{verbatim}

This function determines if the slice \(L[left:right+1] \) of the list \(L \) is sorted in ascending order. If so, the function returns \texttt{True}; otherwise, the function returns \texttt{False}.

6. Write a \textit{recursive} function for converting integers in decimal to equivalent binary numbers. Your function should use the following algorithm.

If the given integer \(n \) is even, then compute the binary equivalent of \(n/2 \) and append “0” to it. If \(n \) if odd, compute the binary equivalent of \(n/2 \) and append a “1” to it.

I have deliberately left out any description of the base cases in the above pseudocode. Use the following function header:

\begin{verbatim}
def recursiveI2B(n):
\end{verbatim}