QuickSort: Final Lecture

MAY 2ND, 2014
The partition function

def partition(L, first, last):
 # We pick the element L[first] as the "pivot" around which we partition the list
 p = first

 # We process the rest of the elements, one-by-one, in left-to-right order
 for current in range(p+1, last+1):
 # If L[current] is smaller than the pivot, it needs to move into the first block,
 # to the left of the pivot.
 if L[current] < L[p]:
 swap(L, current, p+1)
 swap(L, p, p+1)
 p = p + 1

 return p
The partition function in action

Suppose

\[L = [7, 2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7] \]

Say we call

\[\text{partition}(L, 0, 11) \]
First few iterations of partition

- **Processed**

 | | 7 | | || | [2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7] |

 swaps: 2 ↔ 2, 2 ↔ 7

- **Unprocessed**

 | | 7 | | || | [13, 19, 3, 19, 8, 11, 12, 16, 1, 7] |

 0 swaps

 | | 7 | [13] | || | [19, 3, 19, 8, 11, 12, 16, 1, 7] |

 0 swaps

 | | 7 | [13, 19] | || | [3, 19, 8, 11, 12, 16, 1, 7] |

 swaps: 3 ↔ 13, 3 ↔ 7

 | [2, 3] | 7 | [19, 13] | || | [19, 8, 11, 12, 16, 1, 7] |
The rest of the iterations

\[
\begin{align*}
[2, 3] & \quad 7 & [19, 13] & \| & [19, 8, 11, 12, 16, 1, 7] \\
[2, 3] & \quad 7 & [19, 13, 19] & \| & [8, 11, 12, 16, 1, 7] \\
[2, 3] & \quad 7 & [19, 13, 19, 8] & \| & [11, 12, 16, 1, 7] \\
[2, 3] & \quad 7 & [19, 13, 19, 8, 11] & \| & [12, 16, 1, 7] \\
[2, 3] & \quad 7 & [19, 13, 19, 8, 11, 12] & \| & [16, 1, 7] \\
[2, 3] & \quad 7 & [19, 13, 19, 8, 11, 12, 16] & \| & [1, 7] \\
[2, 3, 1] & \quad 7 & [13, 19, 8, 11, 12, 16, 19] & \| & [7] \\
[2, 3, 1] & \quad 7 & [13, 19, 8, 11, 12, 16, 19, 7] & \|
\end{align*}
\]

The function returns 3.
def generalQuickSort(L, first, last):
 # Base case: if first == last, then there is only one element in the
 # slice that needs sorting. So there is nothing to do.

 # Recursive case: if there are 2 or more elements in the slice L[first:last+1]
 if first < last:
 # Divide step: partition returns an index p such that
 # first <= p <= last and everthing in L[first:p] is <= L[p]
 # and everything in L[p+1:last+1] is >= L[p]
 p = partition(L, first, last)

 # Conquer step
 generalQuickSort(L, first, p-1)
 generalQuickSort(L, p+1, last)

 # Combine step: there is nothing left to do!
quickSort in action

- \(L = [3, 6, 9, 1, 3] \). Suppose we call \(\text{quickSort}(L) \).

Calling quicksort on \([3, 6, 9, 1, 3]\)
Divide step gives \([1] 3 [9, 6, 3]\)
Calling quickSort on \([1]\)
Calling quickSort on \([9, 6, 3]\)
Divide step gives \([6, 3] 9 []\)
Calling quickSort on \([6, 3]\)
Divide step gives \([3] 6 []\)
Calling quickSort on \([3]\)
Calling quickSort on \([],\)
Calling quickSort on \([],\)
quickSort in action
Efficiency of quickSort

- **Key observation 1**: partition was designed so as to take \(n \) steps on a list of size-\(n \).

- **Key observation 2**: the relative sizes of the two blocks resulting from partition plays a critical role in determining the overall running time of quickSort.
Best case example
Worst case example
So how does one pick a good pivot?

Simple (and effective) solution:
Pick a random element as the pivot!

Code

```python
# Execute these two lines of code at the
# beginning of partition
r = random.randint(first, last)
swap(L, first, last)
```