QuickSort: Final Lecture

O

def partition(L, first, last):
We pick the element L[first] as the "pivot" around which we partition the list
p = first

We process the rest of the elements, one-by-one, in left-to-right order
for current in range(p+1, last+1):
If L[current]is smaller than the pivot, it needs to move into the first block,
to the left of the pivot.
if L[current] < L[p]:
swap(L, current, p+1)
swap(L, p, p+1)
p=p+l

refurn p

Suppose

L=[7, 2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7]

Say we call
partition(L, O, 11)

First few iterations of partition

O

* Processed Unprocessed
[1 7 [] | [2,13,19, 3,19, 8, 11,12, 16, 1, 7]
swaps: 2 «»2, 2¢> 7/
[2] 7 [] || [13,19, 3,19, 8, 11,12, 16, 1, 7]
O swaps
[2] 7 [13] || [19, 3,19, 8, 11,12, 16, 1, 7]
O swaps
[2] 7 [13,19] || [3,19,8,11,12,16,1, 7]

SWaps: 3 ¢» 13, 3 «>»7
[2,3] 7 [19,13] || [19,8,11,12,16,1, 7]

19, 13] || [19, 8, 11, 12,16, 1, 7]
19, 13, 19] || [8, 11, 12, 16, 1, 7]

7
7
171[19,13,19, 8] || [11,12,16,1,7
17
7
7

»

PNNDNOND NN
e T e

»

\»

19, 13, 19, 8, 11] || [12, 16, 1, 7]
19, 13, 19, 8, 11, 12] || [16, 1, 7]
19, 13, 19, 8, 11, 12, 16] || [1, 7]
,1]7[13, 19, 8, 11, 12, 16, 19] || [7]
,1]7[13, 19, 8, 11, 12, 16, 19, 7] ||

\»

\»

\»

L <)

The function returns 3.

def generalQuickSort(L, first, last):
Base case: if first == last, then there is only one element in the
slice that needs sorting. So there is nothing to do.

Recursive case: if there are 2 or more elements in the slice L[first:last+1]
if first < last:

Divide step: partition returns an index p such that

first <= p <= last and everthing in L[first:p] is <= L[p]

and everything in L[p+1:last+1] is >= L[p]

p = partition(L, first, last)

Conquer step
generalQuickSort(L, first, p-1)
generalQuickSort(L, p+1, last)

Combine step: there is nothing left to do!

L =13, 6,9, 1, 3]. Suppose we call quickSort(L).

Calling quicksort on [3,6,9,1, 3]
Divide step gives [1] 3 [9, 6, 3]
Calling quickSort on [1]

Calling quickSort on [9, 6, 3]
Divide step gives [6, 3]9 []
Calling quickSort on [6, 3]
Divide step gives [3] 6 []

Calling quickSort on [3]

Calling quickSort on []
Calling quickSort on []

quickSort in action

Key observation 1: partition was designed so as to
take n steps on a list of size-n.

Key observation 2: the relative sizes of the two
blocks resulting from partition plays a critical role in
determining the overall running time of quickSort.

Best case example

Worst case example

Simple (and effective) solution:
Pick a random element as the pivot!

Code

Execute these two lines of code at the
beginning of partition

r = random.randint(first, last)

swap(L, first, last)

