
M A Y 2 N D , 2 0 1 4

QuickSort: Final Lecture

The partition function

def partition(L, first, last):
 # We pick the element L[first] as the "pivot" around which we partition the list
 p = first

 # We process the rest of the elements, one-by-one, in left-to-right order
 for current in range(p+1, last+1):
 # If L[current] is smaller than the pivot, it needs to move into the first block,
 # to the left of the pivot.
 if L[current] < L[p]:
 swap(L, current, p+1)
 swap(L, p, p+1)
 p = p + 1

 return p

The partition function in action

�  Suppose

 L = [7, 2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7]

�  Say we call

 partition(L, 0, 11)

First few iterations of partition

�  Processed Unprocessed
[] 7 [] || [2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7]
swaps: 2 2, 2 7
[2] 7 [] || [13, 19, 3, 19, 8, 11, 12, 16, 1, 7]
0 swaps
[2] 7 [13] || [19, 3, 19, 8, 11, 12, 16, 1, 7]
0 swaps
[2] 7 [13, 19] || [3, 19, 8, 11, 12, 16, 1, 7]
swaps: 3 13, 3 7
[2, 3] 7 [19, 13] || [19, 8, 11, 12, 16, 1, 7]

The rest of the iterations

[2, 3] 7 [19, 13] || [19, 8, 11, 12, 16, 1, 7]
[2, 3] 7 [19, 13, 19] || [8, 11, 12, 16, 1, 7]
[2, 3] 7 [19, 13, 19, 8] || [11, 12, 16, 1, 7]
[2, 3] 7 [19, 13, 19, 8, 11] || [12, 16, 1, 7]
[2, 3] 7 [19, 13, 19, 8, 11, 12] || [16, 1, 7]
[2, 3] 7 [19, 13, 19, 8, 11, 12, 16] || [1, 7]
[2, 3, 1] 7 [13, 19, 8, 11, 12, 16, 19] || [7]
[2, 3, 1] 7 [13, 19, 8, 11, 12, 16, 19, 7] ||

The function returns 3.

The QuickSort function

def generalQuickSort(L, first, last):
 # Base case: if first == last, then there is only one element in the
 # slice that needs sorting. So there is nothing to do.

 # Recursive case: if there are 2 or more elements in the slice L[first:last+1]
 if first < last:
 # Divide step: partition returns an index p such that
 # first <= p <= last and everthing in L[first:p] is <= L[p]
 # and everything in L[p+1:last+1] is >= L[p]
 p = partition(L, first, last)

 # Conquer step
 generalQuickSort(L, first, p-1)
 generalQuickSort(L, p+1, last)

 # Combine step: there is nothing left to do!

quickSort in action

�  L = [3, 6, 9, 1, 3]. Suppose we call quickSort(L).

Calling quicksort on [3, 6, 9, 1, 3]
Divide step gives [1] 3 [9, 6, 3]
Calling quickSort on [1]
Calling quickSort on [9, 6, 3]
Divide step gives [6, 3] 9 []
Calling quickSort on [6, 3]
Divide step gives [3] 6 []
Calling quickSort on [3]
Calling quickSort on []
Calling quickSort on []

quickSort in action

Efficiency of quickSort

�  Key observation 1: partition was designed so as to
take n steps on a list of size-n.

�  Key observation 2: the relative sizes of the two
blocks resulting from partition plays a critical role in
determining the overall running time of quickSort.

Best case example

Worst case example

So how does one pick a good pivot?

Simple (and effective) solution:
Pick a random element as the pivot!

Code
Execute these two lines of code at the
beginning of partition
r = random.randint(first, last)
swap(L, first, last)

