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QuickSort: Final Lecture 



The partition function 

def partition(L, first, last): 
    # We pick the element L[first] as the "pivot" around which we partition the list 
    p = first 
 
    # We process the rest of the elements, one-by-one, in left-to-right order 
    for current in range(p+1, last+1): 
        # If L[current] is smaller than the pivot, it needs to move into the first block, 
        # to the left of the pivot.  
        if L[current] < L[p]: 
            swap(L, current, p+1) 
            swap(L, p, p+1) 
            p = p + 1 
 
    return p 



The partition function in action 

�  Suppose  

 L = [7,  2,  13,  19,  3,  19,  8,  11,  12,  16,  1,  7] 

 
�  Say we call  

  partition(L, 0, 11) 
 



First few iterations of partition 

�  Processed           Unprocessed 
[ ]   7  [ ]               ||     [2, 13, 19, 3, 19, 8, 11, 12, 16, 1, 7] 
swaps:  2        2,   2        7 
[2]  7  [ ]               ||     [13, 19, 3, 19, 8, 11, 12, 16, 1, 7] 
0 swaps 
[2]  7  [13]            ||     [19, 3, 19, 8, 11, 12, 16, 1, 7] 
0 swaps 
[2]  7  [13, 19]      ||     [3, 19, 8, 11, 12, 16, 1, 7] 
swaps: 3        13,  3       7 
[2, 3]  7  [19, 13]  ||     [19, 8, 11, 12, 16, 1, 7] 

 



The rest of the iterations 

 
[2, 3] 7 [19, 13] || [19, 8, 11, 12, 16, 1, 7] 
[2, 3] 7 [19, 13, 19] || [8, 11, 12, 16, 1, 7] 
[2, 3] 7 [19, 13, 19, 8] || [11, 12, 16, 1, 7] 
[2, 3] 7 [19, 13, 19, 8, 11] || [12, 16, 1, 7] 
[2, 3] 7 [19, 13, 19, 8, 11, 12] || [16, 1, 7] 
[2, 3] 7 [19, 13, 19, 8, 11, 12, 16] || [1, 7] 
[2, 3, 1] 7 [13, 19, 8, 11, 12, 16, 19] || [7] 
[2, 3, 1] 7 [13, 19, 8, 11, 12, 16, 19, 7] || 
 
The function returns 3. 
 
 



The QuickSort function 

def generalQuickSort(L, first, last): 
    # Base case: if first == last, then there is only one element in the 
    # slice that needs sorting. So there is nothing to do. 
 
    # Recursive case: if there are 2 or more elements in the slice L[first:last+1] 
    if first < last: 
        # Divide step: partition returns an index p such that  
        # first <= p <= last and everthing in L[first:p] is <= L[p] 
        # and everything in L[p+1:last+1] is >= L[p] 
        p = partition(L, first, last) 
 
        # Conquer step 
        generalQuickSort(L, first, p-1) 
        generalQuickSort(L, p+1, last) 
 
        # Combine step: there is nothing left to do! 
 



quickSort in action 

�  L = [3, 6, 9, 1, 3]. Suppose we call quickSort(L). 
 
Calling quicksort on  [3, 6, 9, 1, 3] 
Divide step gives  [1] 3 [9, 6, 3] 
Calling quickSort on  [1] 
Calling quickSort on  [9, 6, 3] 
Divide step gives  [6, 3] 9 [] 
Calling quickSort on  [6, 3] 
Divide step gives  [3] 6 [] 
Calling quickSort on  [3] 
Calling quickSort on  [] 
Calling quickSort on  [] 
 



quickSort in action 



Efficiency of quickSort 

�  Key observation 1: partition was designed so as to 
take n steps on a list of size-n. 

�  Key observation 2: the relative sizes of the two 
blocks resulting from partition plays a critical role in 
determining the overall running time of quickSort. 



Best case example 



Worst case example 



So how does one pick a good pivot? 

Simple (and effective) solution: 
Pick a random element as the pivot! 
 
Code 
# Execute these two lines of code at the  
# beginning of partition 
r = random.randint(first, last) 
swap(L, first, last) 


