
M A R C H 3 R D , 2 0 1 4

Lists as a mutable type

The “+” operator on lists

�  Just like we use the “+” operator for string
concatenation, we can use the “+” operator for
“concatenating” lists.

�  Examples:
¡  [10, 20, 30] + [10, 13] evaluates to [10, 20, 30, 10, 13]
¡  [10, 20, 30] + [“hello”] evaluates to [10, 20, 30, “hello”]
¡  [10, 20, 30] + [] evaluates to [10, 20, 30]

The following code snippets seem equivalent:
L = [10, 20, 30] L = [10, 20, 30]
L = L + [10] L.append(10)

Differences between “+” and append, extend

�  Say L = [1, 2, 3].
�  L.append(17) and L.extend([12, 15]) are examples of in-

place list operations.
�  These operations modify the list L onto which they are

applied. They do not create a new list.
�  In this sense, L.append(17) and L + [17] are very

different from each other.
�  L + [17] does not modify L and it evaluates to [1, 2, 3, 17].
�  Strings do not support any in-place operations. You

cannot modify a string – you have to create a new string.

Try append on a string

�  Suppose s = “hello”

The s.append(“hi”) produces an error message.

For s to take on value “hellohi” we have to use

 s = s + “hi”

Lists support other in-place operations

�  In addition to append and extend:
¡  L[3] = 22
This assigns 22 to the slot in L indexed by 3. The previous value of L[3]
is replaced by 22. L does not change in size.

¡  L.insert(3, 22)
This inserts 22 into slot in L indexed by 3, moving. Elements previously
indexed 3, 4, 5, etc. are all moved to the right and have higher indices
now.
Example:

L = [0, 1, 2, 3, 4, 5, 6]
L.insert(3, 22)
L
[0, 1, 2, 22, 3, 4, 5, 6]

Lists supports other in-place operations

Try these operations:
�  L.remove(22)

¡  Removes first occurrence of 22 from L. Elements that come
after 22 are moved to the left. Length of L decreases by 1.

¡  Causes an error if 22 is not in list; so the programmer has to be
sure of this before using remove.

�  L.sort()
�  L.reverse()

Look at Python documentation: Section 5.6.4 on
Mutable Sequence Types.

Mutable types

�  Lists can support in-place operations and types of this
sort in Python are called mutable types.

�  None of the types we have encountered so far: int, long,
float, bool, string are mutable.

�  There are fundamental differences in behind-the-scenes
implementation between Lists and these other types.

�  These differences are important to learn about because
they manifest themselves in many different settings.

Behind the Scenes

�  The difference between objects of type list and
objects of other types is due to an important
difference in implementation.

�  Consider the assignment: L = [3, 4, 5]
�  We might think that after this assignment, L is a

“sticky note” onto the list [3, 4, 5].
�  But no! L is a “sticky note” onto something that in

turn points to [3, 4, 5].
�  In programming language terminology, we say L is a

“sticky note” to a reference to [3, 4, 5].

Picture

L
(a sticky note)

Reference
(pointer)
(address)

[2, 3, 4]

�  Consider the example:
L= [3,4,5]
LL = L
L.append(6)
LL
[3, 4, 5, 6]

�  Notice how when we modified L, the list LL also
changed. This is not true for any of the data types we
have seen so far.

�  After the assignment LL = L, LL is a “sticky note” to a
reference that also points to the same exact list as L.

Picture

L Reference 1 [3, 4,5]

Reference 2 LL

Another Example

L = [3, 4, 5]
LCopy = L
M = [3, 4, 5]

L == LCopy, LCopy == M, M == L
(True, True, True)

L[0] = 9
L == LCopy, LCopy == M, M == L
(True, False, False)

Implications: Mutations in Functions

def test(L):
 x = L[0] + L[1] + L[2]
 L.append(10)
 return x

Now consider what happens when this function is called:

M = [1, 2, 3, 4]
test(M)
6
M
[1, 2, 3, 4, 10]

This is a side-effect of the in-place operation L.append(10)
performed inside the function.

