
F E B 2 4 T H , 2 0 1 4

Sequence Types

What we have not learned so far…

�  How to store, organize, and access large amounts of
data?

�  Examples:
¡  Read a sequence of million numbers and output these

in sorted order.
¡  Read a text, correct all spelling errors in the text, and

output the corrected text.

�  Programming languages typically provide tools and
techniques to store and organize data.

�  In Python we can use sequence types to do this.

Strings and Lists are examples of Sequence Types

�  A string is a sequence of characters enclosed in quotes.
 Examples: “hello”, “8.397”, “7”, ‘34’
 (The quotes can be single or double quotes)

�  A list is a sequence of objects enclosed in square brackets.
 Examples: [0, 1, 2, 3],
 [“Alice”, “Bob”, “Catherine”],
 [“hello”, 4.567, -22, 87L, ‘bye’]

(Objects of different types can be part of the same list)

�  Lists are more “general” than strings; strings can be viewed as

special instances of lists.

Accessing items in lists and strings

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

•  One of the most useful features of sequence types is that elements in a sequence can
be accessed efficiently and conveniently using their position in the sequence.

•  This type of access is called random access. It refers to the fact that the amount of
time to access an element via its index is independent of the value of the index or the
size of the sequence.

•  Example:

 L[0] is “hi”, L[1] is 10, L[2] is “bye”,…, L[9] is “it”

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

An example with lists and strings

�  Example:
 L = [“hello, Pavan”, [22, 0], 15]

 L[0][4] = “o”
 L[1][0] = 22
 L[0][1] = “e”
 L[2] = 15

The len function

�  Python has a built-in function len(L) that returns the length,
i.e., the number of elements, in list L. We already know that
len(s) works for a string s.

 Examples: len([]) is 0, len([34, 12, 45]) is 3,
 len(“hello”) = 5.

�  Thus the elements of a list L are indexed from 0 through len
(L)-1.

�  This simple observation is quite useful in iterating through a
list.

Example 1: Iterating through a list

�  This program walks through the list, printing each
element.

�  The program uses the positions of the elements to
index into the list.

L = ["hi", 109, "go", 111, 1.16, [122,30], "hello"]
i = 0
while i < len(L):
 print L[i]
 i = i + 1

Example 2: Testing membership in a list

tests if a given element is a member of a given list.
Returns True if element is a member; False otherwise.
def isMember(L, elem):
 i = 0 # i serves as the index into list L

 # Iterate through the elements of the list
 # comparing each of them with elem
 while i < len(L):
 if elem == L[i]:
 return True
 i = i + 1
 return False

The in operator

�  The isMember function is rendered useless – by the Python in operator.

�  The in operator is used as x in L, where x is an object and L is a list. This
expression evaluates to True if x is an element in L; evaluates to False
otherwise.

 Examples: 67 in [34, 12, 45] evaluates to False
 “hi” in [] evaluates to False, etc.

�  This works on strings as well.

 Examples:
 “hi” in “history” evaluates to True
 “ei” in “piece” evaluates to False
 “ace” in “Wallace” evaluates to True

Example 3: Finding location of an element

searches for a given element in a given list and
returns the index of the first occurrence of the
element, if it is present in the list. Otherwise,
returns -1.

def search(L, elem):
 i = 0 # i serves as the index into list L

 # Iterate through the elements of the list
 # comparing each of them with elem
 while i < len(L):
 if elem == L[i]:
 return i
 i = i + 1

 return -1

Adding elements to a list

�  The append and extend operations.
�  Examples:

 >>> L = [1, 25, "hello", -67]
 >>> L.append(25)
 >>> L
 [1, 25, 'hello', -67, 25]
 >>> L.extend([-1, -2])
 >>> L
 [1, 25, 'hello', -67, 25, -1, -2]

Programming Problem 4

�  Read a file containing some number of nonnegative

integers and output the number of distinct integers
in the file.

�  There is no specific format to the file – there could

be several integers in a line or none, consecutive
integers are separated by one or more white spaces
(blanks, tabs, returns).

Example Input File (test.txt)

23 78

 4567 123 789

 230

1236765

78798 6768 678 678 78

Algorithm

1.  masterList = []
2.  Read a line of the file as a string.
3.  “Parse” the line to extract a list numbersInLine of

integers from the line.
4.  Walk through list numbersInLine and for each element

in numbersInLine, not in masterList, add it to
masterList.

5.  Go back to Line (2), if there are more lines to process.
6.  Output the length of masterList.

Main Program

Open a file called test.txt for read only and read the first line
f = open("test.txt", "r")
line = f.readline()
masterList = [] # keeps track of the list of distinct integers in the file

Process each line, if line is non-empty
while line:
 # Parse the line to extract a list of numbers in the line
 numbersInLine = parse(line)

 # Extend the masterList by appending to it all the new
 # numbers in the line.
 masterList = uniqueExtend(masterList, numbersInLine)

 # Read the next line
 line = f.readline()

f.close()

print masterList

The function uniqueExtend

Takes two lists L1 and L2 and returns the list obtained
by appending to L1, all elements in L2 that are not in L1
def uniqueExtend(L1, L2):
 index = 0 # serves as index into list L2

 # Loop to walk through elements of L2
 while index < len(L2):
 # If current element of L2 is not in L1, then append it
 if not(L2[index] in L1):
 L1.append(L2[index])
 index = index + 1

 return L1

The function parse

Takes a string consisting of non-negative integers and
returns a list containing all the integers in the line.
The integers in the line are separated by 1 or more blanks.
def parse(s):

 listOfNumbers = [] # maintains the list of numbers in strings s
 currentNumber = ""

 # The function oscillates between two states: in one state
 # it is processing the digits of an integer and the other state
 # it is processing the white spaces between consecutive integers.
 # The boolean variable numberBeingProcessed is used to keep track
 # of this state.
 numberBeingProcessed = False

 i = 0 # serves as an index into the string s
 while i < len(s):

 # if the current character is a digit
 if s[i] >= "0" and s[i] <= "9":
 numberBeingProcessed = True
 currentNumber = currentNumber + s[i]

 # else if the current character is a non-digit
 # immediately following a number
 elif numberBeingProcessed:
 listOfNumbers.append(int(currentNumber))
 numberBeingProcessed = False
 currentNumber = 0
 i = i + 1

 return listOfNumbers

