Recursive Divide-and-Conquer
Quick Sort
The *Divide-and-Conquer* Paradigm

- This is an important algorithmic technique to efficiently solving computational problems.

- It is commonly used for
 - Efficient sorting
 - Multiplying large numbers
 - Multiplying matrices
 - Finding a closest pair of points in Euclidean space

- It is usually implemented using recursion.
In `binarySearch(L, k)`, we make one comparison: \(k \) compared to \(L[mid] \).

Based on the outcome of this comparison, we either stop, search the left half, or search the right half.

Thus the problem of searching for \(k \) in \(L \) is reduced to search for \(k \) in \(L[:mid] \) or \(L[mid+1:] \).
Divide-and-Conquer Paradigm

- **Divide step:** Partition the problem into sub-problems.

- **Conquer step:** Solve each sub-problem separately.

- **Combine step:** Combine the solutions of the sub-problems into a solution of the original problem.
Algorithms such as selection sort, insertion sort, bubble sort, etc. are all extremely slow for large lists.

This is because they take about N^2 time on a list of size N.

Algorithms that are based on “divide-and-conquer” such as merge sort or quick sort are much faster.

These algorithms run in about $N \log N$ time on a list of size N.
Quick Sort: Main Idea

- **Divide Step:**
 - Rearrange the elements in the lists into two sublists so that all elements in the first sublist are smaller than all elements in the second sublist.

- **Conquer Step:**
 - Sort each of the halves separately.

- **Combine Step:**
 - Combine the two sorted halves into a sorted whole – actually there is not a whole lot to do in this step.
def generalQuickSort(L, first, last):
 # Base case: if first == last, then there is only one element in the
 # slice that needs sorting. So there is nothing to do.

 # Recursive case: if there are 2 or more elements in the slice L[first:last+1]
 if first < last:
 # Divide step: partition returns an index p such that
 # first <= p <= last and everthing in L[first:p] is <= L[p]
 # and everything in L[p+1:last+1] is >= L[p]
 p = partition(L, first, last)

 # Conquer step
 generalQuickSort(L, first, p-1)
 generalQuickSort(L, p+1, last)

 # Combine step: there is nothing left to do!
Quick Sort: Notes

- No comparisons or swapping of elements is happening in this function. (So, where is all this happening?)

- All the work of comparing elements and moving elements is happening in the Divide step, namely the function call to `partition`.
The **partition** function

- **Function call:**
 \[p = \text{partition}(L, \text{left}, \text{right}) \]

- **Rearranges elements and returns an index** \(p \) **such that**:
 - \(\text{left} \leq p \leq \text{right} \)
 - \(L[i] \leq L[p] \) for all \(i, \text{left} \leq i < p \)
 - \(L[j] \geq L[p] \) for all \(j, p < j \leq \text{right} \)