
22C:16 Practice Problem Set 10
Morning Section: Complete before Tuesday, 4-30-2013

Evening Section: Complete before Monday, 4-29-2013

These practice problems are all on recursion.

1. This question is about the fibonacci function shown below.

def fibonacci(n):

if n == 1 or n == 2:

return 1

answer = fibonacci(n-1) + fibonacci(n-2)

return answer

(a) What output does the function produce, if we insert a print n statement as the very
first line of the function and call fibonacci(6). You should solve the problem by
hand and not by running this function on a computer.

(b) What output does the function produce, if we insert a print n statement as the
second-last line of the function (just about the return statement) and call fibonacci(6).
You should solve the problem by hand and not by running this function on a computer.

2. Insert the statement
print L[first:last+1]

as the first line of the function generalMergeSort (i.e., just before the comment line on
“Base case”). Write down the output produced by the function call

mergeSort([3, 6, 4, 11, -4])

3. Insert the statement
print L[first:last+1]

as the last statement of the merge function. Write down the output produced by the
function call

mergeSort([3, 6, 14, 1, 4])

4. Write a recursive function called recursiveLinearSearch with the following function
header:

def recursiveLinearSearch(L, k, left, right)

This function searches the slice L[left:right+1] of the list L for the value k are returns
True if the value is found; and False otherwise. Clearly, identify the base case(s) and
recursive case(s). You cannot assume that the list L is sorted and hence you cannot do
binary search.

5. Write a recursive function called isSorted with the following function header:
def isSorted(L, left, right)

This function determines if the slice L[left:right+1] of the list L is sorted in ascending
order. If so, the function returns True; otherwise, the function returns False.

6. Write a recursive function for converting integers in decimal to equivalent binary numbers.
Your function should use the following algorithm.

1



If the given integer n is even, then compute the binary equivalent of n/2 and
append “0” to it. If n if odd, compute the binary equivalent of n/2 and append
a “1” to it.

I have deliberately left out any description of the base cases in the above pseudocode. Use
the following function header:

def recursiveI2B(n):

7. You are given a list L of numbers and your task is to write a recursive function to determine
the minimum number in L. Use the following function header:

def minimum(L):

For example, if L is [21, 3, 7, 67, 19, 210, 21] then the function should return 3. Of
course this problem can be solved non-recursively, but you will not receive any credit for a
non-recursive solution, even if it is correct. And, by the way, do not forget to specify the
base cases.
Hint: To find the minimum number in L first find the minimum number in the sublist of L
that excludes the first element. Then you just have to compare this with the first element
in L to determine the answer.

2


