
M A Y 1 S T , 2 0 1 3

Quick Sort

Quick Sort: Review

def generalQuickSort(L, first, last):
 # Base case: if first == last, then there is only one element in the
 # slice that needs sorting. So there is nothing to do.

 # Recursive case: if there are 2 or more elements in the slice L[first:last+1]
 if first < last:
 # Divide step: partition returns an index p such that
 # first <= p <= last and everthing in L[first:p] is <= L[p]
 # and everything in L[p+1:last+1] is >= L[p]
 p = partition(L, first, last)

 # Conquer step
 generalQuickSort(L, first, p-1)
 generalQuickSort(L, p+1, last)

 # Combine step: there is nothing left to do!

Quick Sort: Review
The partition function

def partition(L, first, last):
 # We pick the element L[first] as the "pivot" around which we partition the list
 p = first

 # We process the rest of the elements, one-by-one, in left-to-right order
 for current in range(p+1, last+1):

 # If L[current] is smaller than the pivot, it needs to move into the first block,
 # to the left of the pivot.
 if L[current] < L[p]:
 swap(L, current, p+1)
 swap(L, p, p+1)
 p = p + 1

 return p

Quick Sort: Review
The wrapper function and the swap function

def quickSort(L):
 generalQuickSort(L, 0, len(L)-1)

def swap(L, i, j):
 temp = L[i]
 L[i] = L[j]
 L[j] = temp

Partition Function in Action

�  Initial list: [6, 2, 4, 1, 6, 10, 2, 11, 8, 7]
�  6 is selected as the pivot.

[] 6 []
[2] 6 []
[2, 4] 6 []
[2, 4, 1] 6 []
[2, 4, 1] 6 [6]
[2, 4, 1] 6 [6, 10]
[2, 4, 1, 2] 6 [10, 6]
[2, 4, 1, 2] 6 [10, 6, 11]
[2, 4, 1, 2] 6 [10, 6, 11, 8]
[2, 4, 1, 2] 6 [10, 6, 11, 8, 7]

�  Final list: [2, 4, 1, 2, 6, 10, 6, 11, 8, 7]
�  Function returns index 4

The partition may be skewed!

�  Initial list: [16, 2, 4, 1, 6, 10, 2, 11, 8, 7]

[] 16 []
[2] 16 []
[2, 4] 16 []
[2, 4, 1] 16 []
[2, 4, 1, 6] 16 []
[2, 4, 1, 6, 10] 16 []
[2, 4, 1, 6, 10, 2] 16 []
[2, 4, 1, 6, 10, 2, 11] 16 []
[2, 4, 1, 6, 10, 2, 11, 8] 16 []
[2, 4, 1, 6, 10, 2, 11, 8, 7] 16 []

�  Final list: [2, 4, 1, 6, 10, 2, 11, 8, 7, 16]
�  Function returns index 9

Quick Sort in Action

The initial list is: [6, 2, 4, 11, 6, 10, 2]

[2, 4, 2] [6] [6, 10, 11] (partition on [6, 2, 4, 11, 6, 10, 2])
[] [2] [4, 2] (partition on [2, 4, 2])
[2] [4] [] (partition on [4, 2])
[] [6] [10, 11] (partition on [6, 10, 11])
[] [10] [11] (partition on [10, 11])

The sorted list is: [2, 2, 4, 6, 6, 10, 11]

Running Time Comparison

�  On lists with 100,000 elements constructed at random.
Selection sort took 5 minutes on lists of this size.

Finished constructing the lists...
Time for Merge Sort is: 0.678801059723
Time for Quick Sort is: 0.980933904648

Finished constructing the lists...
Time for Merge Sort is: 0.682029008865
Time for Quick Sort is: 0.987423181534

Finished constructing the lists...
Time for Merge Sort is: 0.67242193222
Time for Quick Sort is: 0.985061883926

Puzzle: A different Experiment

�  The input list is [0, 1, 2, …] of size 10,000.

Finished constructing the lists...
Time for Merge Sort is: 0.0404422283173
Time for Quick Sort is: 4.38273501396

Finished constructing the lists...
Time for Merge Sort is: 0.0395169258118
Time for Quick Sort is: 4.36549711227

Finished constructing the lists...
Time for Merge Sort is: 0.0384669303894
Time for Quick Sort is: 4.36951899529

�  Why does quick sort take 100 times more time??

Solution

�  For [0, 1, 2, 3, …, n-1], n units of work yields
 [] 0 [1, 2, 3, …, n-1]

�  An additional n-1 units of work yields
 [] 1 [2, 3, …, n-1]

�  An additional n-2 units of work yields
 [] 2 [3, 4, …, n-1]

So total work is n + (n-1) + (n-2) + … + 1, which is
roughly n2/2.

Ideal behavior

�  n units of work yield
 [……………….] pivot [………………..]

�  n units of work yield
 […….] pivot [……..] [……..] pivot [……….]

�  n units of work yield
 […] pivot […] […] pivot […] […] pivot […] […] pivot […]

� ….

We go down log(n) levels, for a total of n log(n) units
of work.

How to pick a good pivot?

�  Randomize! (Just pick a random element as the pivot,
instead of the first element).

�  Add this line of code at the beginning of partition:
 swap(L, first, random.randint(first, last))

�  Now the running times, even on a sorted input list are

comparable:

Finished constructing the lists...
Time for Merge Sort is: 0.040990114212
Time for Quick Sort is: 0.0971350669861

