
M A R C H  6 T H  2 0 1 3  

Lists as a Mutable Data Type   



The swap function 

�  Consider the following “integer swap” function: 

  def swapInts(a, b): 
         temp = a 
          a = b 
          b = temp 

�  Let us call this function as follows: 

  x = 5 
  y = 10 
  swapInts(x, y) 

 
�  What are values of variables x and y now? 



This is not unexpected! 

�  The fact that x and y remain unchanged is not 
unexpected. 

�  Recall that when the function swapInts is called, the 
parameter a is a local variable that takes of the value 
of x (which is 5). 

�  Similarly, the parameter b is a local variable that 
takes on the value of y (which is 10). 

�  The variables a and b are swapped in swapInts. 
�  However, nothing happens to x and y since these 

and and the variables a and b are distinct. 



Let us now try swapping string elements 

� Consider the code for swap that was part of 
selectionSort: 

  def swap(L, i, j): 
         temp = L[i] 
          L[i] = L[j] 
          L[j] = temp 

� What happens when we call it as follows? 
  s = "hello" 
  swap(s, 1, 2) 

 
 



This is a key difference between strings and lists 

�  Both lists and strings allow the access of elements via 
an index. In other words, we can look at L[i] or s[i]. 

�  However, we can assign to list elements via an index, 
but not to string elements. 

�  Example: 
 s = “hello” 

    s[2] = “p” 
   produces an error saying str object cannot support    
   assignment. 



In-place operations 

�  Say L = [1, 2, 3]. 
�  L[2] = 10 and L.append(17) are examples of in-place list 

operations. 
�  These operations modify the list L onto which they are 

applied. They do not create a new list. 
�  In this sense, L.append(17) and L + [17] are very 

different from each other.  
�  L + [17] does not modify L and it evaluates to [1, 2, 3, 

17]. 
�  Strings do not support any in-place operations. You 

cannot modify a string – you have to create a new string. 



Lists support many other in-place operations 

�  Try these operations! 
¡  L.append(10) 
¡  L.extend([1, 2, 3]) 
¡  L.insert(2, “hello”) 
¡  L.remove(“hello”) 
¡  L.sort() 
¡  L.reverse() 

�  None of these work on strings. 
�  Look at Section 5.6.4 on “Mutable Sequence Types” 

in Python v.2.7.3 documentation. 



Behind the Scenes 

�  The difference between objects of type list and 
objects of other types is due to an important 
difference in implementation. 

�  Consider the assignment: L = [3, 4, 5] 
�  We might think that after this assignment, L points 

to the list [3, 4, 5]. But no! L points to something 
that in turn points to [3, 4, 5]. 

�  In programming language terminology, we say L 
points to a reference to [3, 4, 5]. 



L 
(is a sticky note) 

Reference 
(address) 
(pointer) 

[3, 4, 5] 

Picture 

Indirection 



Implications: list assignment 

�  Consider the example:  
>>> L= [3,4,5] 
>>> LL = L  
>>> L.append(6)  
>>> LL [3, 4, 5, 6] 
�  Notice how when modified L, the list LL also 

changed. This is not true for any of the data types we 
have seen so far. 

�  After the assignment LL = L, LL points to a reference 
that points to the same list as L. 



Another Example using List Assignment 

>>> L = [3, 4, 5]  
>>> LCopy = L  
>>> M = [3, 4, 5]  
>>> L == LCopy, LCopy == M, M == L  
(True, True, True) 
>>> L[0] = 9  
>>> L == LCopy, LCopy == M, M == L  
(True, False, False) 



Implications: Mutations in Functions 

def test(L):  
   L[0] = 7 
    return sum(L) 
 
# main program 
J = [3, 4, 5] 
print test(J)  
print J 
 
�  When you run this and print J, you will see that J has become [7, 4, 5]. 

�  When J is sent in as argument to test, L is given a copy of J.  

�  But, since J is pointing to a reference to a list, L ends up pointing to a copy of the 
reference, but to the same physical list. 

 
�  This provides another way of communicating between a main program and functions 

(and between functions). 


