
M A R C H 1 5 T H , 2 0 1 3

Functional Programming in
Python

Problem

Write a program that counts the number of numbers
in the range 0 through 1000 that contain the digit 7.

�  The program in its entirety:

def containsSeven(s):
 return "7" in s

print len(filter(containsSeven, map(str, range(0, 1001))))

Functional Programming

�  Functional programming is a programming paradigm that
treats computation as the evaluation of mathematical
functions.

�  Programming languages that do not use this style are called
imperative programming languages (C, C++, Java, etc).

�  For our purposes in this course, functional programming
amounts to passing functions as arguments to other
functions.

�  We will learn about built-in Python functions map, filter,
and reduce that are extremely powerful because they take
other functions as arguments.

Functional Programming

�  In general, it is easier to reason formally about
programs written in functional programming style.

�  General purpose functional programming
languages: Lisp, Scheme, Haskell, OCaml, etc.

�  Specialized functional programming
languages: Mathematica (mathematical computation),
R (statistical computation), etc.

�  Python has elements of both imperative style and
functional style.

The map function

�  map(f, [a, b, c, d, e]) returns the list [f(a), f(b), f
(c), f(d), f(e)]

�  The first argument of map is a function f and the
second argument is a list L; it returns a new list
obtained by applying f onto every element of L.

Examples:
�  map(round, [4.57, -9.876, math.pi]) returns [5.0, -10.0, 3.0]
�  map(str, range(0, 6)) returns [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’]

�  The map function allows us to construct new lists from old
ones.

The map function

�  Note that one can equivalently use the for-loop or
the while-loop. Using the map function is faster.

�  The map function can also take functions with more
than one argument.

Example:
 def pow(x, y):
 return x + y
>>> map(pow, [3, 4, 5], [5, 6, 7])
[8, 10, 12]

The filter function

�  filter(f, L) returns a sublist of L consisting of those
elements in L (in the same order as they appear in L)
for which the boolean function f evaluates to True.

�  Examples:
¡  filter(bool, [0, -10, 0.0, None, “hello”]) returns [-10, 'hello']

¡  filter(containsSeven, map(str, range(1001))) returns a list
containing all of the numbers in the range 0 through 1000 that
contain 7.

The reduce function

�  This function is used as:
reduce(f, L)

�  Here f is a two-argument function and L is a list.
�  At each step, reduce passes the current answer

followed by the next item from the list, to f in order
to obtain the next answer.

�  By default, the first item in the sequence is taken as
the first answer.

Example: reduce(multiply, range(1, n+1)) is a
compact and efficient way of computing n!.

Try these Examples!

�  map(str, range(0,10,3))
�  len(filter(isPrime, range(20)))
�  reduce(concat, map(str, range(1, 10, 2)))
�  reduce(concat, range(1, 10, 2))
�  map(range, range(5))

�  isPrime is a boolean function indicating primality.
�  concat(a, b) returns a + b

The future of map, filter, and reduce

�  There is some pushback against using elements of
functional programming in Python.

�  Python 3.0+ de-emphasizes these functions. In fact,
reduce is not available as a built-in in Python 3.0+.

�  Instead, users are encouraged to use list
comprehensions, which are also available in Python 2.7.

�  The next lecture is devoted to list comprehensions.

