Functional Programming in




Write a program that counts the number of numbers
in the range o0 through 1000 that contain the digit 7.

The program in its entirety:

def containsSeven(s):
return"7" ins

print len(filter(containsSeven, map(str, range(0, 1001))))



Functional programming is a programming paradigm that
treats computation as the evaluation of mathematical
functions.

Programming languages that do not use this style are called
imperative programming languages (C, C++, Java, etc).
For our purposes in this course, functional programming

amounts to passing functions as arguments to other
functions.

We will learn about built-in Python functions map, filter,

and reduce that are extremely powerful because they take
other functions as arguments.



In general, it is easier to reason formally about
programs written in functional programming style.

General purpose functional programming
languages: Lisp, Scheme, Haskell, OCaml, etc.

Specialized functional programming
languages: Mathematica (mathematical computation),
R (statistical computation), etc.

Python has elements of both imperative style and
functional style.



map(f, [a, b, ¢, d, e]) returns the list [f(a), f(b), f
(c), £(d), f(e)]

The first argument of map is a function f and the
second argument is a list L; it returns a new list
obtained by applying f onto every element of L.

Examples:
map(round, [4.57, -9.876, math.pi]) returns [5.0, -10.0, 3.0]

map(str, range(0, 6)) returns ['0’, '1', 2, '3', '4’, '5']

The map function allows us to construct new lists from old
ones.



Note that one can equivalently use the for-loop or
the while-loop. Using the map function is faster.
The map function can also take functions with more
than one argument.

Example:
def pow(x, y):
return X +y
>>> map(pow, [3, 4, 5], [5, 6, 7])
[8, 10, 12]



o filter(f, L) returns a sublist of L consisting of those
elements in L (in the same order as they appear in L)
for which the boolean function f evaluates to True.

+ Examples:
filter(bool, [0, -10, 0.0, None, “hello"]) returns [-10, "hello']

filter(containsSeven, map(str, range(1001))) returns a list
containing all of the numbers in the range o through 1000 that
contain 7.



This function is used as:
reduce(f, L)
Here f is a two-argument function and L is a list.

At each step, reduce passes the current answer
followed by the next item from the list, to f in order
to obtain the next answer.

By default, the first item in the sequence is taken as
the first answer.

Example: reduce(multiply, range(1, n+1)) is a
compact and efficient way of computing n!.



map(str, range(0,10,3))
len(filter(isPrime, range(20)))
reduce(concat, map(str, range(1, 10, 2)))
reduce(concat, range(1, 10, 2))
map(range, range(5))

iIsSPrime is a boolean function indicating primality.
concat(a, b) returns a + b



There is some pushback against using elements of
functional programming in Python.

Python 3.0+ de-emphasizes these functions. In fact,
reduce is not available as a built-in in Python 3.0+.

Instead, users are encouraged to use list
comprehensions, which are also available in Python 2.7.

The next lecture is devoted to list comprehensions.



