Binary Search

MARCH 13TH, 2013
The Search Problem

- One of the most common computational problems (along with sorting) is searching.

- In its simplest form, the input to the search problem is a list L and an item k and we are asked if k belongs to L. (The in operator in Python.)

- In a common variant, we might be asked for the index of k in L, if k does belong to L. (The $L.\text{index}()$ method in Python.)
If we don’t know anything about L, then the only way to solve the problem is by scanning the list L completely in some systematic manner.

This takes time proportional to the size of the list, in the worst case.

And for this reason, this is called linear search.

Linear search can be quite inefficient for many applications because search is such a common operation in programs.

The Python in operator and list.index() method perform linear search because they are expected to work on any list.
Binary Search

- If the list L is known to be sorted (in ascending or descending order), then we can use a much more efficient algorithm called binary search.

- Binary search is so much more efficient than linear search that it provides a significant incentive to keep lists sorted.

- More on the efficiency of binary search later.
Binary Search Algorithm

- Suppose that L is sorted in ascending order.
- Compare k with the middle element of L.
 - If k == L[middle], we are done
 - If k < L[middle], we need to search the first half of L
 - If k > L[middle], we need to search the second half of L
- Notice that after one comparison, the size of the problem shrinks to 1/2 of what it was earlier.
- (Compare this with linear search where after one comparison, the problem size reduced by just 1 element.)
Binary Search Algorithm (more details)

- Explicitly maintain two indices `left` and `right`.
- The sublist `L[left..right]` (inclusive) is what still remains to be searched.
- Initially, `left` is 0 and `right` is `len(L)-1`.
- Since we are interested in comparing `k` with the “middle” element, we maintain a third index called `mid` (set to `(left + right)/2`).
- After one comparison, either we find `k` or we look for it in the left half (`right = mid - 1`) or in the right half (`left = mid + 1`).
The function `binarySearch`

```python
def binarySearch(L, k):
    left = 0
    right = len(L)-1

    # iterate while there is a sublist that needs to be searched
    while left <= right:
        mid = (left + right)/2  # index of the middle element

        # Comparisons and then adjusting the boundaries of
        # the sublist, if necessary
        if L[mid] == k:
            return mid  # element is found at mid, so return this index
        elif L[mid] < k:  # look for element in right half
            left = mid + 1
        elif L[mid] > k:  # look for element in the left half
            right = mid -1

    return -1  # element is not found in the list
```
binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 65)
Slices searched:
- 0 7
- 4 7
- 6 7
- 7 7
- Not found

binarySearch([1, 4, 11, 24, 24, 56, 60, 70], 4)
Slices searched:
- 0 7
- 0 2
- Found
Worst Case Running Time

- Assume the worst case, i.e., we don’t find \(k \).
- After each comparison of \(k \) with \(L[mid] \) the problem size shrinks to \(\frac{1}{2} \) of what it was before the current iteration.

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>Number of iterations completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>0</td>
</tr>
<tr>
<td>(N/2^1)</td>
<td>1</td>
</tr>
<tr>
<td>(N/2^2)</td>
<td>2</td>
</tr>
<tr>
<td>(N/2^3)</td>
<td>3</td>
</tr>
<tr>
<td>(N/2^4)</td>
<td>4</td>
</tr>
</tbody>
</table>
Thus after \(t \) iterations have been completed, the problem size has shrunk to \(N/2^t \).

Therefore, for the problem size to shrink to 1, we need

\[
N = 2^t
\]

\[
t = \log_2 N
\]

Thus the worst case running time of binary search is logarithmic in the size of the list.
Example that shows the speed of Binary Search

- **Problem:** If we sample N times uniformly at random from the integers $\{1, 2, 3, ..., N\}$, how many distinct elements will we get?

- Statisticians are interested in these kinds of questions.

- It is easy to write a simple Python program to get a sense of this.
Code using slow search

```python
import random

L = []
for i in range(50000):
    L.append(random.randint(1,50000))

count = 0
for e in range(1, 50001):
    if e in L:
        count = count + 1

print count
```
Output

Time to build list is 0.129420042038
31733
Time to count distinct elements is 45.7874200344
import random
from binarySearch import *

L = []
for i in range(50000):
 L.append(random.randint(1,50000))
L.sort()

count = 0
for e in range(1, 50001):
 if binarySearch(L, e) >= 0:
 count = count + 1
Time to build list is 0.125706195831
Time to sort list is 0.0273258686066
31717
Time to count distinct elements is 0.3523209095