
F E B 2 0 T H , 2 0 1 3

More about functions

The manyRandomWalks functions

�  Definition:
 def manyRandomWalks(n, numRepititions):

 …
 …
 return float(sum)/numRepititions

�  The first line of the function definition is called the function
header. The rest of the function is called the function body.

�  The names n and numRepititions in the function header are
called parameters of the function.

�  In a the following call to this function:
 print manyRandomWalks(m, 100)

�  The expressions m and 100 are called function arguments.

Parameters versus Arguments

�  Parameters are variables used in a function header.
�  Parameters get assigned values when a function is called.

 def foo(x, y, z):
 x = y + z
 return x + y + z

�  Here x, y, and z are parameters of the function foo.
�  Inside the function foo, they can be treated as variables that

acquire values provided by a function call (e.g., foo(2, 7, 3)).

Parameters versus Arguments

�  Arguments in a function call could be complicated
expressions that will be evaluated to a value first
before being sent in to the function.

 Example: manyRandomWalks(80/x, y + 1)

�  In fact, arguments could be expressions involving

calls to other functions.
 Example: manyRandomWalks(int(math.sqrt(x)), y + 1)

Matching arguments to parameters

�  One way in which Python matches arguments to parameters is by
reading them left to right and matching 1st argument to 1st parameter,
2nd argument to 2nd parameter, etc.

�  This is called the positional style of parameter passing.

�  So
 manyRandomWalks(10, 100)

 and
 manyRandomWalks(100, 10)

 will return very different values.

�  In this way of parameter passing the number of arguments and the
number of parameters also have to exactly match.

Keyword arguments

�  You can avoid matching by position by using
keyword arguments in the function call.

�  Example: manyRandomWalks(numRepititions = 200, n = 20)

� Here numRepititions and n are function
parameters.

�  Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

� The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)

Keyword parameters

�  There is a way to define default values of parameters.
�  Example: def manyRandomWalks(n, numRepititions = 100)

� This function can now be called with one or two
arguments and in different styles.

� Examples: Try these out
¡  manyRandomWalks(10)
 (The default value of 100 us used for numRepititions; 10 is used for n)

¡  manyRandomWalks(40, 150)
 (40 is used for n, 150 for numRepititions)

Another example

def test(x = 3, y = 100, z = 200):
 return x - y + z

Examples of function calls:
1.  test(10) (10 is used for x; default values 100 for y and 200 for

z)
2.  test(10, 20) (10 is used for x, 20 for y; default value 200 for z)
3.  test(z = 35) (default values 3 for x, 100 for y; 35 for z)
4.  test(10, z = 35) (10 for x, default value 100 for y, 35 for z)
5.  test(z = 50, 10, 12) (Error: positional arguments come first,

then keyword arguments)

Things that functions return

�  Functions don’t have to explicitly return values. For
example:
 def printGreeting(name):
 print “Hello”, name, “how are you?”

�  How would you call such a function?
 Example:

 printGreeting(“Michelle”)
�  What would happen if you executed?
 x = printGreeting(“Michelle”)

The object None

�  None is a built-in constant in Python that is used to indicate
the absence of a value.

�  In the example,
 x = printGreeting(“Michelle”)

 x is assigned the value None. You can see this by trying
 print x

�  To understand None better try:

¡  type(x)
¡  bool(x)

�  Unline True and False which can be assigned to even though they are
listed as built-in Python constants, None cannot be assigned to.

Solution to Quiz 4 Problem

�  Define a function called factorSum whose header is:
 def factorSum(n):

�  The parameter n is expected to be a positive integer
and the function returns the sum of all the factors of
n. For example, if n were 10, the function would
return 18 (which is 1 + 2 + 5+ 10).

(In the quiz, you were asked to assume that such a function was already
provided to you.)

Function factorSum

Programmer: Sriram Pemmaraju
Date: Feb 19th, 2013

This function takes a postive integer parameter and
returns the sum of the factors (1 and n included) of
n.
def factorSum(n):
 factor = 1 # tracks potential factors from 1 through n
 sumOfFactors = 0 # tracks the sum of factors
 while factor <= n:
 # I use a slightly obscure style here to illustrate the fact
 # that all objects in Python have boolean values.
 # Here, if factor evenly divides n, then n%factor evaluates to
 # 0, which has boolean value False and therefore in this case
 # not n%Factor evaluates to True
 if not n%factor:
 sumOfFactors = sumOfFactors + factor
 factor = factor + 1

 return sumOfFactors

Problem (continued)

�  A positive integer n is called perfect if the sum of all the factors of n, excluding n, is equal
to n. For example, n = 6 is perfect because its factors, excluding 6, are 1, 2, and 3 and 1+ 2
+ 3 = 6. For this problem, we want you to write a function called nextPerfect with the
following function header:

 def nextPerfect(M):

�  You can assume that the parameter M is a positive integer. This function should return

the smallest perfect integer that is greater than or equal to M. This function should call
factorSum repeatedly to complete its task.

�  Example. The first four perfect integers are 6, 28, 496, and 8128. So if we call
nextPerfect(10), it should return 28. Even if we call nextPerfect(20), the function should
return 28. In fact, even if we call nextPerfect(28), the function should return 28.
However, if we call nextPerfect(29), the function should return 496.

Function nextPerfect

This function returns the smallest perfect number
that is greater than or equal to M.
def nextPerfect(M):

 while True:
 # factorSum(n) returns the sum of all factors of n, including
 # n. So n has to be first excluded from this sum before we compare
 # it to n.
 if factorSum(M) - M == M:
 return M
 M = M + 1

