
F E B 1 6 T H

Random Walks and Defining
Functions

If we take a random walk, will we go places?

�  Problem: Simulate a random walk in which a
person starts of at point 0 and at each step randomly
picks a direction (left or right) and moves 1 step in
that direction.

�  Take a positive integer n and terminate the
simulation when the walk reaches n or –n.

�  Report the average number of steps it took for the
walk to terminate.

�  Do this for various n and plot the results to get a
sense of how rapidly the walk terminates, as a
function of n.

The random module

�  Programs for games and simulation use
randomization extensively.

�  In games, you want to add an element of

randomness to the obstacles or adversaries.

�  In simulations (e.g., traffic simulation) you want to
introduce actors into your simulation according to
certain probability distribution.

Some functions in the random module

�  random.randint(a, b): return a random integer N
such that a <= N <= b.

�  random.random(): Return the next random floating
point number in the range [0.0, 1.0).

�  random.uniform(a, b): Return a random floating
point number N such that a <= N <= b for a <= b
and b <= N <= a for b < a.

Simple Example

Problem: Write a program that takes as input a
positive integer n and simulates n rolls of two six-sided
dice. The program should report the number of times 7
appears as the sum of the outcomes of the two dice
rolls.

Solution

Programmer: Sriram Pemmaraju
Feb 13th, 2013
This program simulates the roll of two six-sided dice
as many times as specified by the input. Then the program
outputs the number of times 7 shows up as the sum of the two
dice rolls

import random
n = int(raw_input("Enter the number of times you want the dice rolled: "))

counter = 0 # keeps track of the number of rolls
numSevens = 0 # keeps track of the number of sevens

while counter < n:
 sumRolls = random.randint(1, 6) + random.randint(1, 6)
 if sumRolls == 7:
 numSevens = numSevens + 1

 counter = counter + 1

print "The number of sevens is", numSevens

Taking a single random step

import random

Version 1. This program starts off a person at 0 and moves
her one step to the left or right, at random.

location = 0
step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2
if step == 0:
 step = -1
location = location + step
print location

Simulating the random walk

import random

Version 2. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or - n.

n = input("Enter a positive integer: ")
location = 0

Loop terminates when the location reaches n or -n
while abs(location) != n:
 step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step

print location

Counting the length of the random walk

import random

Version 3. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or - n. It outputs the length of the walk.

n = input("Enter a positive integer: ")
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:
 step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step
 length = length + 1

print length

What more is there to do?

There are two more things we need to do to solve our
problem:

1.  Find the average length of a walk, for a particular value

n of the barrier. We have to decide how many runs to
take the average over.

2.  Repeat this for various values of n and try to
understand the trend.

We need a loop around our current code to do (1) and

another loop around that code to do (2).

Defining a function

�  Things have become complicated enough that we
need to reorganize our code using functions.

�  The plan is to define a function called randomWalk
that takes n (the barrier distance) as an argument
and returns the length of a simulated random walk.

�  We can then just call this function from the main
part of the program.

The function randomWalk

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
 location = 0 # tracks the location of the person
 length = 0 # tracks the length of the random walk

 # Loop terminates when the location reaches n or -n
 while abs(location) != n:
 step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step
 length = length + 1

 return length

Notes about this function

�  The first line of the function:
 def randomWalk(n)

�  The body of the function is indented.
�  It is as though n is input to the function.
�  A function can have one or more arguments
�  The last line of the function is usually a return:

 return length

Python keyword
function name argument list

The rest of the program

 n = input("Enter a positive integer: ")
 print randomWalk(n)

�  randomWalk(n) is a call to the function randomWalk

providing it the number n that the user as input as an
argument.

�  In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

�  This means that “control” is transferred to the function and
we start executing the function starting with its first line.

�  The value that the function returns essentially replaces the
function call.

Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated
sum = 0 # sum of the lengths of the walk; needed for average
while count < 100:
 sum = sum + randomWalk(n)
 count = count + 1

print float(sum)/100

Making another function

This function repeats a random walk with barrier n as many times
as specified by the argument numRepititions and returns the length
of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):
 count = 0 # tracks the number of times the walk is repeated
 sum = 0 # sum of the lengths of the walk; needed for average

 # Repeats the random walk as many times as specified by numRepititions
 while count < numRepitions:
 sum = sum + randomWalk(n)
 count = count + 1

 return float(sum)/100

The rest of the program

 n = input("Enter a positive integer: ")
 print manyRandomWalks(n, 100)

�  The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

�  Names in the function call have nothing to do with names
in the function definition. We could have written
 m = input("Enter a positive integer: ")
 print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

m = 10 # tracks the value of the barrier
m travels through 10, 20, ..., 100 in this loop and we compute and print the
average walk length for each m
while m <= 100:
 print manyRandomWalks(m, 100)
 m = m + 10

Sample output

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86 376.4
827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk

