Random Walks and Defining Functions
If we take a random walk, will we go places?

Problem: Simulate a *random walk* in which a person starts at point 0 and at each step randomly picks a direction (left or right) and moves 1 step in that direction.

- Take a positive integer \(n \) and terminate the simulation when the walk reaches \(n \) or \(-n \).
- Report the *average* number of steps it took for the walk to terminate.
- Do this for various \(n \) and plot the results to get a sense of how rapidly the walk terminates, as a function of \(n \).
The random module

- Programs for games and simulation use randomization extensively.

- In games, you want to add an element of randomness to the obstacles or adversaries.

- In simulations (e.g., traffic simulation) you want to introduce actors into your simulation according to certain probability distribution.
Some functions in the `random` module

- `random.randint(a, b)`: return a random integer N such that $a \leq N \leq b$.

- `random.random()`: Return the next random floating point number in the range $[0.0, 1.0)$.

- `random.uniform(a, b)`: Return a random floating point number N such that $a \leq N \leq b$ for $a \leq b$ and $b \leq N \leq a$ for $b < a$.
Problem: Write a program that takes as input a positive integer \(n \) and simulates \(n \) rolls of two six-sided dice. The program should report the number of times 7 appears as the sum of the outcomes of the two dice rolls.
Programmer: Sriram Pemmaraju
Feb 13th, 2013
This program simulates the roll of two six-sided dice
as many times as specified by the input. Then the program
outputs the number of times 7 shows up as the sum of the two
dice rolls

import random
n = int(raw_input("Enter the number of times you want the dice rolled: "))

counter = 0 # keeps track of the number of rolls
numSevens = 0 # keeps track of the number of sevens

while counter < n:
 sumRolls = random.randint(1, 6) + random.randint(1, 6)
 if sumRolls == 7:
 numSevens = numSevens + 1
 counter = counter + 1

print "The number of sevens is", numSevens
Taking a single random step

import random

Version 1. This program starts off a person at 0 and moves
her one step to the left or right, at random.

location = 0
step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2
if step == 0:
 step = -1
location = location + step
print location
Simulating the random walk

import random

Version 2. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or -n.

n = input("Enter a positive integer: ")
location = 0

Loop terminates when the location reaches n or -n
while abs(location) != n:
 step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step

print location
import random

Version 3. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or -n. It outputs the length of the walk.

n = input("Enter a positive integer: ")
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:
 step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
 if step == 0:
 step = -1
 location = location + step
 length = length + 1

print length
What more is there to do?

There are two more things we need to do to solve our problem:

1. Find the average length of a walk, for a particular value n of the barrier. We have to decide how many runs to take the average over.

2. Repeat this for various values of n and try to understand the trend.

We need a loop around our current code to do (1) and another loop around that code to do (2).
Defining a function

- Things have become complicated enough that we need to reorganize our code using functions.

- The plan is to define a function called `randomWalk` that takes n (the barrier distance) as an argument and returns the length of a simulated random walk.

- We can then just call this function from the main part of the program.
The function `randomWalk`

This function takes the barrier distance `n` as an argument, simulates the random walk until it hits the barrier (`n` or `-n`), and returns the length of the random walk

```python
def randomWalk( n ):
    location = 0 # tracks the location of the person
    length = 0 # tracks the length of the random walk

    # Loop terminates when the location reaches `n` or `-n`
    while abs(location) != n:
        step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
        if step == 0:
            step = -1
        location = location + step
        length = length + 1

    return length
```

Notes about this function

• The first line of the function:

```python
def randomWalk(n)
```

• The body of the function is indented.
• It is as though \(n \) is input to the function.
• A function can have one or more arguments
• The last line of the function is usually a return:

```python
return length
```


The rest of the program

n = input("Enter a positive integer: ")
print randomWalk(n)

- `randomWalk(n)` is a call to the function `randomWalk` providing it the number `n` that the user as input as an argument.
- In order to execute the print statement, the function call `randomWalk(n)` needs to be executed first.
- This means that “control” is transferred to the function and we start executing the function starting with its first line.
- The value that the function returns essentially replaces the function call.
n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated
sum = 0 # sum of the lengths of the walk; needed for average
while count < 100:
 sum = sum + randomWalk(n)
 count = count + 1

print float(sum)/100
Making another function

This function repeats a random walk with barrier n as many times
as specified by the argument numRepititions and returns the length
of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):
 count = 0 # tracks the number of times the walk is repeated
 sum = 0 # sum of the lengths of the walk; needed for average

 # Repeats the random walk as many times as specified by numRepititions
 while count < numRepititions:
 sum = sum + randomWalk(n)
 count = count + 1

 return float(sum)/100
The rest of the program

```python
n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)
```

- The function call needs to supply arguments in the correct order, i.e., in the order specified in the function definition.

- Names in the function call have nothing to do with names in the function definition. We could have written

  ```python
  m = input("Enter a positive integer: ")
  print manyRandomWalks(m, 100)
  ```

And the value of m and the value 100 would be used for n and numRepititions in the function.
Trying this out for different barrier values

m = 10 # tracks the value of the barrier
m travels through 10, 20, ..., 100 in this loop and we compute and print the
average walk length for each m
while m <= 100:
 print manyRandomWalks(m, 100)
 m = m + 10
Sample output

Length of random walk

112.86 376.4 827.6 1628.04 2570.6 3594.2 4616.14 6035.6 8596.58 10948.58