
F E B 1 1 T H 2 0 1 3

Variables and Expressions
in Python

Variables in Python: The “sticky note” model

 Variables are “sticky notes” attached to objects.

 What happens during an assignment statement?

 x = 10

 A memory cell (4 or 8 bytes large) is created and the value 10 is

placed in it.

 The label “x” is attached (“stuck”) to this memory cell.

Multiple “sticky notes” at the same location

What happens when we execute the following code?

 x = 10

 y = x

 x = x + 1

1. x is a “sticky note” attached to a memory cell containing 10.

2. Then the label y is also stuck to this very location.

3. When x = x + 1 is executed, remember the memory cell containing 10
remains unchanged and the “sticky note” x is moved to the cell with
11.

4. Therefore y continues to have value 10.

Naming Variables

 Variable names need to start with a letter (upper or
lower case) or an underscore (i.e., _).

 Following the first character, any sequence of letters,

digits, and underscores is allowed.

 Python has a small number of keywords, that cannot

be used as variable names:
and del from not while as elif global

or with assert else if pass yield break

except import print class exec in raise continue

finally is return def for lambda try

Naming Variables

 Case matters. The variables count and Count are
different.

 Do not use lower case el (“l”), upper case oh (“O”), or
upper case eye (“I”) as single letter variable names.
These are hard to distinguish from numerals 0 and 1
in some fonts.

 Use meaningful names: e.g., factorBound,
myUpperLimit, sequenceLength, etc.

 Watch out for spelling errors in variable names.

Scope of a Variable

 In Python there is no explicit variable declaration.
 In many languages (C, Java, etc.) variables have to be

declared before they can be used.
 In programs in these languages, a variable comes into

existence when it gets declared.
 In Python, a variable comes into existence when it is first

assigned a value.
 The variable lives until the end of the program or until it

is explicitly deleted using the del operator (this operator
will become useful later).

 The scope of a variable is the portion of the program that
the variable is in existence for.

Well-formed expressions

 Examples:
 1 - 2 * 4 ** 3 – 24

 len(str(bin(2222/10)))

 (currentNumber < max) and (currentNumber >= secondMax)

 not False or True and not True

 56 +++++ 32 --- 25

 250/0

 len(str(bin(2222)/10))

 Examples of “ill-formed” expresions:
 (23 + abs(-9)

 “33 + “25”

 3(12 + 4)

Well-formed expressions

 Python has a bunch of rules for determining whether an expression has
correct structure (similar to grammar rules in a language that
determine whether a sentence has correct structure).

 These rules, by themselves, do not guarantee that the expression is
meaningful (see the last two well-formed expression examples from the
previous slide).

 These rules are what you would expect:
 A constant or variable by itself is a well-formed expression.

 A unary operator (e.g., -, not) should be followed by a well-formed expression.

 A binary operator should be preceded by and followed by well-formed expressions.

 If you put parentheses around a well-formed expression, it will be well-formed.

 If f is a function name and X, Y, Z, etc. are well-formed expressions, then f(), f(X), f(X,
Y), f(X, Y, Z), etc. are all well-formed expressions.

Evaluating expressions

 Syntax rules defining well-formed expressions tell us
which expressions are structurally correct, but do not tell
us how to evaluate expressions.

 Here are examples of expressions in which there is some
ambiguity.

 Examples:

 1 - 2 * 4 ** 3 – 24

 not False or True and not True

 Python has rules on order of evaluation and operator
precedence to help resolve such ambiguities.

Python’s algorithm for evaluating expressions

1. Evaluate expressions inside inner-most
parentheses first.

2. Evaluate sub-expressions involving operators with
higher precedence first.

3. Sub-expressions involving operators of the same
precedence are evaluated left to right.

 Rule (1) implies that parentheses can be used to
override the other rules.

Operator precedence

Operator Meaning

f (…) function application

** exponentiation

-E change sign

*, /, //, % multiplication, division, remainder

+, - addition, subtraction

<, >, <=, >=, ==, != comparison

not logical negation

and logical conjunction

or logical disjunction

Examples

1. not False or True and not True
1. not False is evaluated first: True or True and not True

2. Not True is evaluated next: True or True and False

3. True and False is evaluated next: True or False

4. True or False is evaluated next: True

2. 1 - 2 * 4 ** 3 – 24
1. 4 ** 3 is evaluated first: 1 – 2 * 64 – 24

2. 2 * 64 is evaluated next: 1 – 128 – 24

3. 1 – 128 is evaluated next: -127 – 24

4. -127 – 24 is now evaluated: -151

and and or are “short-circuit” operators

 In evaluating boolean operators and and or Python
tries to get away with the minimum evaluation
needed to figure out the value of the expression.

 A and B:
 A is evaluated first.

 If A is False then the expression evaluates to False, without B
being evaluated.

 If A is True then B is evaluated and the expression evaluates
to the value of B.

Try evaluating these example expressions

 100/0

 False and (100/0)

 (100/0) and False

 True and (100/0)

 (100/0) and True

and and or are “short-circuit” operators

 A or B:

 A is evaluated first.

 If A is True then the expression evaluates to True, without B

being evaluated.

 If A is False then B is evaluated and the expression evaluates

to the value of B.

Python associates boolean values to everything

 Every object (e.g., “6”, 9.98, “”) has an associated

boolean value.

 Use the bool function to find out the boolean value of

an object.

 Examples: Try evaluating

 bool(“a”) bool(0) x = 6

 bool(“”) bool(1) bool(x)

What is True? And what is False?

True False

The constant True The constant False

1, numbers other than 0 0

Non-empty strings Empty strings

Later when we study Lists, Dictionaries, etc., we will
see that empty instances of these types of objects are
also considered False.

A new version of the intToBinary program

 while n:

 suffix = str(n%2) + suffix

 n = n/2

The boolean expression after the while can just be
n instead of n > 0.

Some silly examples

 10 < 20 and 50

 “hello” and “” or 70 < 20

 not not not 20

