Recursion
def fibonacci(n):
 # Base cases
 if n == 1 or n == 2:
 return 1
 else:
 # Recursive case
 return fibonacci(n-1) + fibonacci(n-2)
Partial Recursion Tree for \texttt{fibonacci}(8)
A puzzle

- Implement the fibonacci function non-recursively.

- Compare the running times of the recursive and non-recursive functions.

- What do you find? How might you explain the results?
def fibonacci(n):
 if n == 1 or n == 2:
 return 1
 current = 1
 previous = 1
 count = 2
 while count < n:
 temp = current
 current = previous + current
 previous = temp
 count = count + 1
 return current
Inefficiency of the Recursive Function

- Sometimes recursive functions can be extremely inefficient. The `fibonacci` function is an example.

- The (partial) recursion tree for `fibonacci(8)` hints at why this might be: the same problem is being solved many times.

- The function has no recollection of having solved the problem earlier!
Efficiency of $\text{fibonacci}(n)$: Exponential Growth

The plot shows the running time (in seconds) of $\text{fibo}(n)$ for $n = 20, 21, \ldots, 30$. The graph demonstrates exponential growth, indicating that the running time increases rapidly as n increases.
Example: Efficiently computing the power function

- The Fibonacci example showed that sometimes recursion can be extremely inefficient compared.

- However, sometimes a recursive-approach can lead to tremendous gains in efficiency.

- We will see several examples of this.

- Problem: Given a real number a and a nonnegative integer n, compute a^n.

Computing a^n efficiently.

- It is easy to write a loop that performs $n-1$ multiplications to compute a^n.

- However, we can compute a^n much more efficiently.

Example: To compute a^{32}, we could compute a^{16} first and then use one multiplication to square it. To compute a^{16}, we would compute a^8 and then use one multiplication to square it...
It takes 5 multiplications to compute a^{32}

- For each recursive call, we perform just one multiplication, but manage to reduce the problem size to $\frac{1}{2}$ its previous size.

- This is a common theme in many efficient algorithms: if we can do just a little work and manage to shrink the problem size down to $\frac{1}{2}$ its original size, then we have an efficient solution.
What about an odd power?

- **Example:** Compute a^{39}

- We could compute a^{19}, square it (using one multiplication) to get a^{38} and then use another multiplication to compute a^{39}.

- Thus using 2 multiplications we can reduce the power to less than $\frac{1}{2}$ of what it was earlier.
def power(a, n):
 # Base Cases
 if n == 0:
 return 1
 if n == 1:
 return a
 # Recursive Case: even n
 if n % 2 == 0:
 temp = power(a, n/2)
 return temp*temp
 # Recursive Case: odd n
 if n % 2 == 1:
 temp = power(a, n/2)
 return temp*temp*a