
22C:16 (CS:1210) Homework 5
Due via ICON on Friday, April 19th, 4:59 pm

What to submit: Your submission for this homework will consist of just one file called
hw5Solution.py. This file should contain the definitions of two functions createDistanceMatrix
(for Problem 1) and createCityNetwork (for Problem 2). As always your file should start with a
header consisting of your name and section. Also, make sure that your code is well-documented
(i.e., has plenty of helpful comments), uses appropriate variable-names, is not unnecessarily
complicated or inefficient.

Introduction

For this homework, we have posted a file called miles.dat that contains geographic data on
128 cities in the U.S. and Canada. The data is very old — from a 1949 Rand McNally mileage
guide, so the population numbers are definitely out of date. The highway mileage may also be
out of date, but the data serves our purposes quite nicely. For each of the 128 cities, the data
file contains (i) the name and state of the city, (ii) the latitude and longitude of the city, (iii) the
population of the city, and (iv) the distance from that city to each of the cities listed before it
in the data files. For example, Wilmington, Delaware is the tenth city in the data file and here
is how information about Wilmington, DE appears in the data file.

Wilmington, DE[3975,7555]70195

466 168 1618 430 934 299 2749 1305 345

The two numbers in square brackets after “DE” are the latitude and longitude of the city.
Following this, we see the population of the city, which was 70,195 in 1949. In the next line are
the distances between Wilmington, DE and the 9 cities that appear before it in the file. For
example, 466 is the number of miles between Wilmington, DE and the city Wilmington, NC
that appears just before Wilmington, DE in the data file. Similarly, 168 is the distance between
Wilmington, DE and Winchester, VA which appears just before Wilmington, NC in the data
file.

Problems

1. Write a function called createDistanceMatrix that reads the geographic data given in
miles.dat and returns two data structures: (i) a list of city names and (ii) a 128 × 128
matrix that stores distances between pairs of cities.

Here are some notes that should help clarify, what you are being asked to do.

• The list of city names should be a list of 128 strings. Since the names of cities are not
all distinct (e.g., there are two Wilmington’s) you should store the name of the city
along with the name of the state that the city belongs to. One way to do this would
be to represent each city by a string “cityName stateName”. For example, the first
city in the data set is Youngstown, which is a city in Ohio. You would represent this
city by the string “Youngstown OH” with the city name and the two-letter state code
being separated by a singe blank. The city names should by stored in the list in the
order in which they appear in the data file. For example, the element in position 0
should be “Youngstown OH”, the element in position 1 should be “Yankton SD” etc.

• The matrix of distances (let us call this distances) should be a list of lists such that
distances[i][j] should be the distance between the city that is position i and the
city that is in position j in the list of city names. In particular, distances[0][0]
should be the distance between Youngstown, OH and itself, which is 0; distances[0][1]

1



should be the distance between Youngstown, OH and Yankton, SD, which is 966;
distances[0][2] should be the distance between Youngstown, OH and Yakima,
WA, which is 2410, etc.

• Once you have correctly defined the function createDistanceMatrix, we should be
able to call it as

[cityList, distances] = createDistanceMatrix()

and work with the data structures cityList and distances, as we please.

Here are some hints with regards to some of the issues you will run into while working on
the problem.

• First of all, notice that the distances between a city and all previous cities appear over
several lines. For example, consider Uniontown PA which has 37 cities before it in the
file. So we should expect to read 37 distances after the line containing Uniontown PA
and indeed there are 37 numbers appearing over three lines. One easy way to read
these distances might be to have a variable called expectedDistances that tracks
the number of distances you still expect to read before reading the line containing
the next city. So for Uniontown PA, expectedDistances will initially have value 37.
Now let us say you have read the first line of distances (there are 16 distances in
this line), split this line, and stored the distances. The variable expectedDistances

should now have value 11. Since this variable has not reached 0 yet, it means that
there are more distances to read. Once this variable reaches value 0, you know that
the next line (if it exists) will contain a new city.

• You will need to think a little bit about which “slot” in the distance matrix each
distance you read from the file goes into. Again, consider the example of Uniontown
PA. Uniontown PA appears in position 37 in the list of city names. Therefore, the
first distance after the line containing Uniontown PA (which is 417) should go into
slots [37][36] and into slot [36][37] in the distance matrix.

2. Write a function createCityNetwork that takes three parameters: (i) a list of city names,
(ii) a distance matrix containing pairwise distances between cities, and (ii) a positive real
number r. The function should create a dictionary-based data structure of a network of
cities in which pairs of cities that are at distance at most r are considered to be neighbors.
For example, we should be able to call this function as

cityNetwork = createCityNetwork(cityList, distances, 400)

and then expect cityNetwork["Uniontown PA"] to be the list of all cities (in cityList)
that are atmost 400 miles from Uniontown PA. By “dictionary-based” data-structure, we
simply mean the type of data-structure that we used to represent the word network in the
word ladders game example, discussed in the lectures.

Note that the typical usage for createCityNetwork would be after we have called the
function createDistanceMatrix to construct the list of cities and the distance matrix
extracted from the text file miles.dat. However, createCityNetwork should work fine
even with arguments of appropriate size, that have nothing to do with miles.dat. For
example, the call
cityNetwork = createCityNetwork(["A", "B"], [[0, 10], [10, 0]], 15)

should be able to correctly construct a city network with two cities.

2


