
M A R C H 1 9 T H 2 0 1 2

String Operations

Python has lots of string operations…

 You can find a bunch of these in Section 5.6.1.
“String Methods” of the Python documentation
(v.2.7.2).

 These are in addition to the operations we studied
that are common to lists and strings.

 indexing, slicing

 membership testing (in and not in) and concatenation (+).

 index, count

String operations

 Here is a categorization (of some of these methods)
that might help you navigate the long list of available
string operations:

 Boolean methods: isalpha, isalnum, isdigit, islower,
isupper, isspace , startswith.

 Reformatting methods: lower, upper, swapcase, capitalize,
center, strip, lstrip, rstrip, ljust, rjust.

 Split methods: split, lsplit, rsplit, splitlines.

 Join methods: join.

 Replace methods: replace

Examples: boolean methods

>>> "hello".isalpha()
True
>>> "hello".isalnum()
True
>>> "1234".isdigit()
True
>>> "39.78".isalnum()
False
>>> "hello?".islower()
True
>>> "Hello??".islower()
False
>>> "hello?".startswith("he")
True
>>> "hello?".startswith("He")
False

Examples: Reformatting methods

>>> "Hello, how are you?".lower()
'hello, how are you?'
>>> "Hello, how are you?".swapcase()
'hELLO, HOW ARE YOU?'
>>> "jack".capitalize()
'Jack'
>>> " this string has spaces.. ".strip()
'this string has spaces..'
>>> " this string has spaces.. ".lstrip()
'this string has spaces.. '
>>> " this string has spaces.. ".rstrip()
' this string has spaces..'
>>> "test".center(20)
' test ‘
>>> "hello??".rjust(20)
' hello??'

Split and Join

>>> "hello, how are you?".split()
['hello,', 'how', 'are', 'you?']
>>> "Other, characters, can, be, used,,to,split?".split(",")
['Other', ' characters', ' can', ' be', ' used', '', 'to',
'split?']
>>> '''This string
... spans a
... few lines'''.splitlines()
['This string', 'spans a ', 'few lines']
>>> " ".join(["hello", "are","you","ok?"])
'hello are you ok?'
>>> "??".join(["hello", "are","you","ok?"])
'hello??are??you??ok?'

Replace

>>> "hello how are you?".replace(" ", "!")

'hello!how!are!you?‘

>>> "hello, how are you?".replace("h","")

'ello, ow are you?'

Problem: Creating a dictionary

Read a text file (e.g., a large novel such as “War and Peace”) that
is guaranteed to consist of words that are correctly spelled.
Extract “words” from this file and write these out in alphabetical
order in a file called “dictionary.txt”.

A word is a contiguous sequence of letters, preceeded by a non-
letter and followed by a non-letter.

Words in “dictionary.txt” should be unique and should be in
lower case.

Extra credit: An attempt should be made to avoid proper
nouns.

Version 1

#Programmer: Sriram Pemmaraju
#Date: March 13, 2012
#Version 1

Open the input file "war.txt"
fin = open("smallWar.txt", "r")

wordList = []

Loop that processes each line of the file
for line in fin:
 wordList = wordList + line.split()

#Close the input file
fin.close()

#Block of code that produces output
fout = open("dictionary1.txt", "w")
for word in wordList:
 fout.write(word+"\n")
fout.close()

Comments on Version 1

 I tried to run this on the full text of “War and Peace”
but it was taking too long to complete. So I decided
to run it on a smaller version of file consisting of just
the first 1000 lines of the original.

 We will revisit the reason for this inefficiency later.

 The output file contains one word per line.

 But, the words contain non-letters and upper case
letters.

 They are not in sorted order and surely contain
duplicates.

Version 2

 I made three changes to Version 1 in order to deal
with the issue of non-letters.

 First I created a list of all non-letter characters that
might be in the text file.

 Notice the use of ord, chr, and map in this code.

List of all non-letter characters

punctuationMarks = map(chr, range(0, ord("A")) + range(ord("Z")+1, ord("a")) +
range(ord("z")+1, 127))

Version 2

 I defined a function that takes a line (i.e., a string)
and replaces every non-letter in this string by a
blank.

 Notice the use of the replace method in this code.

Replaces each non-letter character by a blank
def filterOutPunctuation(punctuationMarks, s):
 for mark in punctuationMarks:
 s = s.replace(mark, " ")
 return s

Version 2

 Finally, I process each line by first replacing non-
letters by blanks and then splitting at blanks.

Loop that processes each line of the file

for line in fin:

 newLine = filterOutPunctuation(punctuationMarks, line)

 wordList = wordList + newLine.split()

Comments on Version 2

 The list of words produced as output no longer
contains non-letters.

 However, it does contain upper case letters, is not
sorted, and contains duplicates!

Version 3

 I made three changes to Version 2 in order to deal
with the upper case letter issue.

 First I defined a function that takes a list of words
and turns this list into words in lower case.

def toLower(s):

 return s.lower()

def makeListLower(wordList):

 return map(toLower, wordList)

Version 3

 When each line is processed , the words are turned
into lower case words.

Loop that processes each line of the file

for line in fin:

 newLine = filterOutPunctuation(punctuationMarks, line)

 wordList = wordList + makeListLower(newLine.split())

Version 3

 The word list is sorted before being printed.

#Block of code that produces output

fout = open("dictionary3.txt", "w")

wordList.sort()

for word in wordList:

 fout.write(word+"\n")

fout.close()

Version 4

 Now I created a new version that dealt with the issue of
duplicates.

 The only change I made is to the code that produces output.

fout = open("dictionary4.txt", "w")
wordList.sort()
previousWord = "" # keeps track of the word most recently output
for word in wordList:
 # only print out new words
 if word != previousWord:
 fout.write(word+"\n")
 previousWord = word
fout.close()

File I/O

 More often than not programs read from files, rather
than from input typed at the keyboard.

 Often one program reads what another program outputs.

 More and more, programs are reading data produced by
other hardware, e.g., sensors, telescopes, microarrays,
etc.

 I these instances very little, if any, input is provided at
the keyboard.

File objects

 Simplest Python statement for opening a file:

 f = open(“war.txt”)

 Assuming that there is a file called “war.txt” in the same

directory as your Python program, this statement opens
the file for reading.

 Subsequently, the file can be accessed via the variable f.

 Since f is a variable, it has a type. Try type(f).

File objects

 The variable f is often called a file object.

 If the file is missing from the directory, an error
message is issued.

 >>> g = open("hello.txt")

 Traceback (most recent call last):

 File "<string>", line 1, in <fragment>

 IOError: [Errno 2] No such file or directory: 'hello.txt‘

 One a file object is successfully connected to a file
residing on your machine, we can use the file
object to read from the file in a variety of ways.

Reading from a file

 s = f.read()
 Reads everything from the file into the string s

 s = f.readline()
 Reads the next line from the files into s

 for line in f:
 print line.split()
 Allows us to read and process the file line by line

Let us solve these problems on “War and Peace”

1. Build a dictionary of words extracted from the text
that we might be able to use later, maybe in a
spellchecker.

2. Compute the number of sentences in the text.

3. Compute the frequencies of letters in the text.

Two useful built-in Python functions that can help in
solving Problem 3 are ord and chr.

Two useful functions

 ord(ch)
 if ch is a single character string, this function returns the

ASCII code for ch

 chr(i)
 returns a string of one character whose ASCII code is the

integer i

What is ASCII?
It stands for the American Standard Code for Information

Interchange. It assigns a number in the range 0..255 to
every character that can be entered at the keyboard.

More on ASCII

 The numbers 0..31 are reserved for unprintable
characters, e.g., the tab character (“\t”), the end of
line character (“\n”), etc.

 32 is the ASCII value of the space character (“ “)

 33..47 is used for some punctuation characters

 48..57 is used for digits “0” through “9”

 65..90 is used for upper case letters

 97..122 is used for lower case letters

ASCII Table

Some examples of chr and ord in action

>>> ord("a")
97
>>> chr(97)
'a'
>>> ord(" ")
32
>>> ord("0")
48
>>> chr(48)
'0'
>>> chr(49)
'1'
>>> ord("A")
65
>>> ord("B")
66

How are these functions useful?

 Because of the the fact that all the upper case letters
occur consecutively in the ASCII table, the
expression ord(ch) – ord(“A”) has value 0 for ch=
“A”, value 1 for ch = “B”, has value 2 for ch = “C”, etc.

 Similarly, ord(ch)-ord(“a”) has value 0 for ch = “a” ,
has value 1 for ch = “b”, has value 2 for ch = “c”, etc.

A program to count letter frequencies

f = open("war.txt")

L = [0]*26

s = f.read()

for ch in s:

 if ch.isupper():

 L[ord(ch)-ord("A")] = L[ord(ch)-ord("A")] + 1

 elif ch.islower():

 L[ord(ch)-ord("a")] = L[ord(ch)-ord("a")] + 1

print L

Notice how ord(ch)-ord(“A”) and ord(ch)-ord(“a”) are used
to index into the list L.

Another example

 The ord and chr functions can be used to perform

Caeser’s Cipher (Problem 3, HW 7).

 Try this: chr(ord(“a”) + 4)

 What does this expression evaluate to?

