Programming Problem 2: Primality testing
Our second programming problem

Primality Testing
Given a positive integer (> 1), determine whether it is a prime number or not.

Examples:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>prime</td>
</tr>
<tr>
<td>2001</td>
<td>composite</td>
</tr>
<tr>
<td>987654321</td>
<td>composite</td>
</tr>
</tbody>
</table>
Generate all “candidate” factors of n, namely 2, 3, ..., n-1

For each generated “candidate” factor, check if n is evenly divisible by the factor (i.e., the remainder is 0).

If a “candidate” factor is found to be a real factor, then n is composite.

If no “candidate” factor is found to be a real factor, then n is a prime.
Algorithm in pseudocode

1. Input n
2. For each factor = 2, 3, ..., n-1 do the following
3. if n is evenly divisible by factor then
4. remember that n is a composite
5. If we have detected that n is a composite
6. output that n is a composite
7. Otherwise output that n is a prime
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
while(factor <= number - 1):
 if(number % factor == 0):
 isPrime = False
 factor = factor + 1
 if(isPrime):
 print number, "is prime"
else:
 print number, "is composite"