
J A N 2 5 T H 2 0 1 2

Improving our program

Improving the output

�  How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

�  String concatenation!
 Expression Value
 “0” + “1001” “01001”
 “1” + “1001” “11001”

Algorithmic idea

�  After i iterations of the while loop we have generated
the right most i bits of our answer.

�  Call this the length-i suffix.

�  We want to maintain a string:

 Length-0

suffix
Length-1

suffix
Length-2

suffix

Example

�  Input is 39.

 Output Suffix
 1 “”
 1 “1”
 1 “11”
 0 “111”
 0 “0111”
 1 “00111”
 “100111”

Improved program

 n = int(raw_input("Enter a positive integer:"))
 suffix = “”
 while n > 0:
 suffix = str(n % 2) + binary
 n = n/2
 print suffix

Here is another improvement to the output

 n = int(raw_input("Enter a positive integer:"))
 suffix = ""
 originalN = n
 while n > 0:
 suffix = str(n%2) + suffix
 n = n/2
 print "The binary equivalent of", originalN, "is", suffix

Making the program more robust

�  What if the user types in a negative integer or 0?
 Or a real number? Or some non-numeric string,
(e.g., “hello”)?

�  We will only discuss the negative integer or 0

situation now.

�  Later when we discuss exceptions and how to handle

them, we’ll return to this program.

Making the program more robust

�  What if the user types in a negative integer or 0?
 Or a real number? Or some non-numeric string,
(e.g., “hello”)?

�  We will only discuss the negative integer or 0

situation now.

�  Later when we discuss exceptions and how to handle

them, we’ll return to this program.

Types of errors

�  Syntax error
 Syntax refers to the structure of the program.
 (e.g., English sentences start with a capital letter)

 Examples:
 while x < 10 n = int(raw_input()
 x =x + 1 print n

Types of errors

�  Run-time errors (or exceptions)
 This is an error that occurs during the running of the
program and is typically caused by the user not
anticipating a certain behavior of their program.

 Example:
 n = int(raw_input(“Enter a number:”))
 print n + 5

What if the user inputs “hello”?

Types of errors

�  Semantic errors
 The program may not produce an error message
when executed, but it may not do what we expect it
to do.

 Example:
 In an earlier version of our program:
 print "The binary equivalent of", n, "is", suffix
 We forgot that n would have changed to 0 at this point.

The case of non-positive integers

�  What does the program currently do, if the user
inputs a negative integer or 0?

�  We could instead try to print an informative
message.

�  We will use the if-else statement for that.

Simple if statement

 Line 1
 if boolean expression:
 Line 2
 Line 3
 Line 4

�  If boolean expression is true:

 Line 1, Line2, Line 3, Line 4.
�  Otherwise: Line 1, Line 4.

if-else statement

 Line 1
 if boolean expression:
 Line 2
 Line 3
 else:
 Line 4
 Line 5

�  If boolean expression is true:
 Line 1, Line 2, Line 3, Line 5

�  Otherwise: Line 1, Line 4, Line 5

Dealing with negative integer input

�  If n <= 0, print out an appropriate message and do
nothing else.

�  Else, continue to do what the program is currently

doing.

Our Final First Program

 n = int(raw_input("Enter a positive integer:"))
 if n <= 0:
 print “Enter a positive integer next time. Bye!”
 else:
 suffix = ""
 originalN = n
 while n > 0:
 suffix = str(n%2) + suffix
 n = n/2
 print "The binary equivalent of", originalN, "is", suffix

