Computer Science I: Fundamentals (22C:16)

WELCOME!

INSTRUCTOR: SRIRAM PEMMARAJU

CONGRATULATIONS!

- This is an exciting time to be a computer scientist!
- **Computational Thinking** is becoming part of all aspects of life:
 - o Biology, Healthcare, Pharmacy, Biomedical Engg
 - **o** Physics, Astronomy
 - Economics, Social Science
 - o Music, Film
 - **•** Humanities
 - **)**

Core CS Areas are Thriving!

- Data Mining
- Graphics
- Human Computer Interaction
- Networks and Distributed Computing
- Natural Language Processing
- Vision
- Robotics
- Algorithms

Here is ACM's poster on careers in computing: http://www.acm.org/membership/careernews/extras/careercolor.pdf

- If you've searched the web lately using *Google*, *Bing*, *Baidu*, etc., you've used one of the most impressive contributions of CS.
- How do search engines manage to search through *billions* of web pages spread across the world and find just those you were looking for in microseconds?
- Advances in *Algorithms*, *Data Mining*, *Distributed Computing*, *Networking*, etc., all come together in search engines.

Watson vs The Humans

- In Feb 2010 "Watson" the Jeopardy playing machine built by IBM handily defeated human champions Ken Jennings and Brad Rutter.
- Read a pre-match article at Wired: http://www.wired.com/epicenter/2011/01/ibm-watson-jeopardy/
- Watch an edited video of the show at: <u>http://www.youtube.com/watch?v=YLR1byLoU8M</u>
- This is a major advance in *natural language processing*.

Microsoft Xbox Kinect

A controller-free gaming add-on to Xbox 360

- The Kinect sensor does full-body 3D motion capture, facial recognition and voice recognition.
- The software does motion analysis with feature extraction of 20 joints per player.

Computational Epidemiology at Iowa

- Computational tools to model, simulate, visualize and understand the spread of disease.
- Goal is to provide information to general public, hospital policy makers, etc.
- We use Algorithms and Graph theory, Data Mining, Sensor Networks, Statistics, Visualization,...
- Visit <u>http://compepi.cs.uiowa.edu/</u>

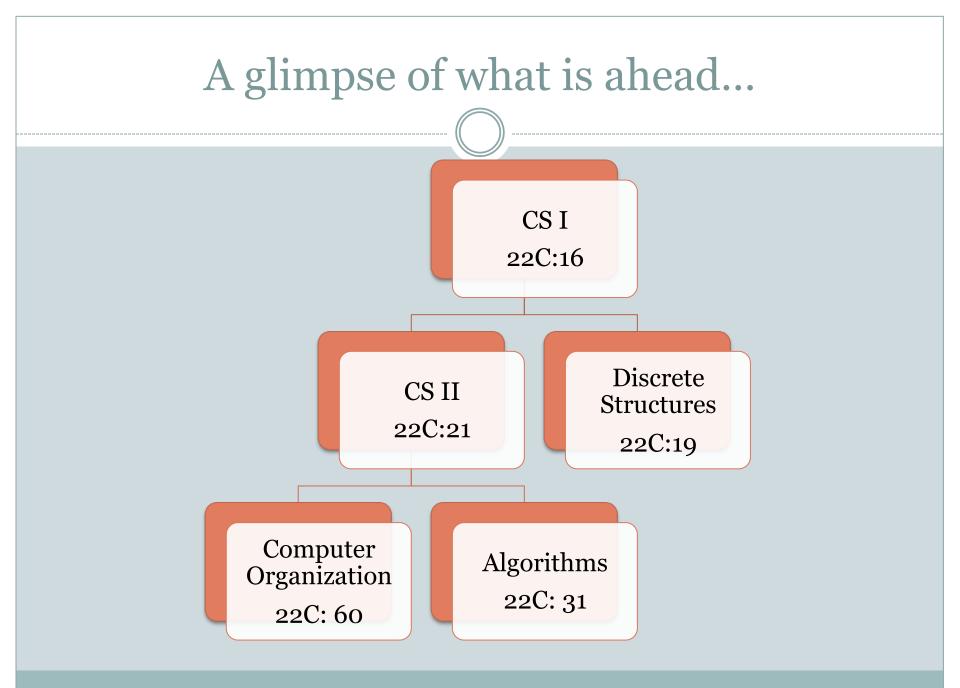
Other amazing examples...

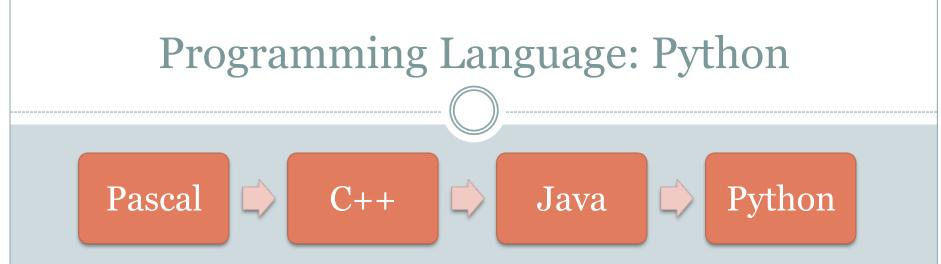
 Google's project on "self-driving" cars. See this article in Spectrum: <u>http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/</u>

how-google-self-driving-car-works

• The success of Mars exploration rovers. See this page at Jet Propulsion Labs (JPL):

http://marsrover.nasa.gov/home/index.html


Computer Science I: Fundamentals


• Is much more than programming...

• A successful student will learn to view the world through a "computational lens."

Introduction to

- Techniques for solving computational problems
- Designing algorithms
- Thinking about their efficiency
- Translating algorithms into reliable, reusable software

Language in CS I over the years

A pitch for Python

- Easy to get started
- Allows beginners to focus on getting the computer to do what they want!
- Interactive mode is great for experimenting
- Extensive standard and third-party libraries
- No variable declarations, run-time rather than compile-time errors

To be successful...

- This should be the only course you are taking this semester!
- Separate **algorithm design** and **coding**.
- Stay **unplugged** as much as possible.
- Program **incrementally**. **Test** each increment before moving on.

To be successful...

• Attend lectures and attend your discussion section (on Tuesday) regularly.

• Help is plentiful; so see us often:

- Two instructors: Sriram Pemmaraju, Steve Miller
- Three graduate teaching assistants (TAs):
 - × Piyush Dubey
 - × Valerie Galluzzi
 - × Daniel Squire

Information on office hours and coordinates will be available on the course.

• Visit the course website

http://www.cs.uiowa.edu/~sriram/16/spring12/

regularly (e.g., twice a day). All lecture notes, homeworks, quizzes, solutions, announcements, etc., will appear there.

• Turn in all your work on time. Late submissions will not be accepted. We will use ICON dropbox for submissions.

See the syllabus...

• For all kinds of information including

- Topics we will cover and a schedule
- The components of evaluation
 - × quizzes (weekly, in discussion sections)
 - × homeworks (weekly, due back on Fridays)
 - × Programming projects (two, 3 weeks long each)
 - × Exams (three, two in-class and one final)
- Policies on cheating, classroom ettiquete, communicating with instructors and TAs, etc.

Students with disabilities

I would like to hear from anyone who has a disability which may require seating modifications or testing accommodations or accommodations of other class requirements, so that appropriate arrangements may be made.

Please see me right away.

Onto an unpleasant matter...

- There is no excuse for cheating.
- You cannot pass off someone else's work as your own.
- You can talk, but no actual exchange of written material.
- If you are not sure, see me right away.
- When in doubt, make sure to attribute.

• Become familiar with the Python programming environment (IDE).

• Two popular IDEs for Python are:

- IDLE: open source, usually bundled with Python
- Wing: proprietary, developed by Wingware, free version available for download for Windows/Mac OS/Linux.
- Examples in this class will use the Wing IDE.
- Instructions for using the Wing IDE in a lab are available on the course page.
- Instructions for downloading Python and Wing IDE for Windows and Mac OS are also available on the course page.

Have a good semester!

• See you on Friday.