
M A R C H 7 T H

More on Sequence Types

Operations that work on strings and lists

1. x in s, x not in s: Membership operations

2. s + t, s*n, n*s: Concatenate operations.

3. s[i], s[i:j], s[i:j:k]: Operations for accessing parts
of strings and lists.

Examples: evaluate these expressions

1. “l”*2 in “hello”[:3]
2. “l”*2 in “hello”[2:]
3. [“How”, “are”, “you”][1][:1]
4. (range(1, 5, 3)*2)[2:3]
5. (range(1, 5, 3)*2)[2:3]*5
6. range(10) in range(20)
7. range(10) in [range(10), range(10)]
8. range(20)[3:12:2]
9. "w" in "Iowa" and (5!=4*3-7 or "k" not in "Hawk")
10. "easy" in ("yes we ease"*2)

Operator precedence including these new operators

Operator Meaning

f(…) Function call

s[…] Indexing into a sequence

** Exponentiation

-E Change sign

*, /, %, // Multiplication, division

+, - Addition, subtraction

<, <=, >, >=, !=, == Comparisons

in, not in Membership

not E Logical negation

and Logical conjunction

or Logical disjunction

Built-in Functions on lists and strings

1. len(s): returns the length of sequence s

2. min(s), max(s): return the smallest (largest)

element in s.

3. sum(s): returns the sum of the elements in s.

4. all(s): returns True if all elements in s are True;

False otherwise.

5. any(s): returns True if any element in s is True;

False otherwise.

The min and max functions

 min(s) (max(s)) is the smallest (largest) element in s
 If s is a list of numbers (integers, longs, and floats) these

functions return the smallest (largest) number

 If s is a list of strings, these functions return the
lexicographically smallest (largest) string

 If s is a string, these functions return the lexicographically
smallest (largest) character in the string

 If s is a list that contains a mixture of numeric and non-
numeric objects, then the result is not specified by the
language and you should not rely on such a result.

Examples

 max("hyperbole", "hyena", "hypotenuse")

Strings are ordered in lexicographic or “telephone
book” order.

 min(“charming!")

There is a standard encoding of characters used by
computers called the American Standard Code for
Information Interchange (ASCII). Characters are
ordered according to this encoding.

The “search”methods

 s.index(e) returns the index of the first occurrence of e in s
 s.count(e) returns the number of occurrences of e in s

>>> L = [1, 3, 6] * 4
>>> L
[1, 3, 6, 1, 3, 6, 1, 3, 6, 1, 3, 6]
>>> L.index(3)
1
>>> L.count(3)
4
>>> L.index(0)
Traceback (most recent call last):
 File "<string>", line 1, in <fragment>
ValueError: 0 is not in list
>>> L.count(0)
0

Methods versus Functions

 Notice the new syntax. This reflects the fact that
index and count are methods and not functions.

 There are some fundamental differences behind the
scenes between methods and functions.

 The differences you should focus on for now are:
 A method call (e.g., L.index(3)) is always applied on to an

object (L, in this example).

 The syntax of a method call is

object.methodName(argument list)
 The method has access to the object it is being applied on to

and the arguments it is being sent .

Problem: Selection Sort

 Sorting is a fundamental algorithmic problem in
computer science.

 The sorting problem asks that we rearrange elements
in a list so that they are in ascending or descending
order.

 There are many known algorithms for sorting:
insertion sort, selection sort, bubble sort, quick sort,
merge sort, heap sort, shell sort, radix sort, etc.

 Using the operations and functions we have just
learned about, let us implement selection sort.

