
F E B 2 7 T H , 2 0 1 2

Sequence Types

What we have not learned so far…

 How to store, organize, and access large amounts of
data?

 Examples:

 Read a sequence of million numbers and output these
in sorted order.

 Read a text, correct all spelling errors in the text, and
output the corrected text.

 Programming languages typically provide tools and
techniques to store and organize data. In Python we
can use sequence types to do this.

Strings and Lists are examples of Sequence Types

 A string is a sequence of characters enclosed in quotes.
 Examples: “hello”, “8.397”, “7”, ‘34’
 (The quotes can be single or double quotes)

 A list is a sequence of objects enclosed in square brackets.
 Examples: [0, 1, 2, 3], [“Alice”, “Bob”, “Catherine”],
 [“hello”, 4.567, -22, 87L, ‘bye’]
 (Objects of different types can be part of the same list)

 Lists are more “general” than strings; strings can be viewed as

special instances of lists.

Two simple operations on lists

 The in operator is used as x in L, where x is an
object and L is a list. This expression evaluates to
True if x is an element in L; evaluates to False
otherwise.

 Examples: 67 in [34, 12, 45] evaluates to False
 “hi” in [] evaluates to False, etc.

 Python has a built-in function len(L) that returns the

length, i.e., the number of elements, in list L.

 Examples: len([]) is 0, len([34, 12, 45]) is 3, etc.

Both of these work on strings as well

Examples:

“hi” in “history” evaluates to True

“ei” in “piece” evaluates to False

“ace” in “Wallace” evaluates to True

Examples:

len(“history”) returns 7

len(“”) returns 0

len(“piece”) returns 5

Generating lists

 Python has a built-in function called range that allows us to generate lists
using arithmetic progressions.

 It can have one, two, or three arguments, all of which must be integers.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 >>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
 []

The range function is useful in for-loops

 for i in range(1, 10, 2):

 print i*i

 Repeats the execution of the body of the for-loop for
each value of i = 1, 3, 5, 7, and 9.

 Equivalent to
 i = 1

 while i < 10:

 print i*i

 i = i + 2

 But more convenient for simple loops because no need to
initialize before loop and no need to update within loop.

More examples of for-loops

L = ["hello", "hi", "bye"]

for e in L:

 print e + e

s = "What is this sentence?"

for ch in s:

 print ch

Generating Lists: Initialization

 Here is another useful way of generating lists ,
particularly for initializing them, i.e., assign them
“initial” values at the start of a program.

Example:

 n = 25

 L = [8]*n

This assigns to L a list of length 25 consisting of the
integer 8.

Accessing lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

• One of the most useful features of sequence types is that elements in a
sequence can be accessed efficiently and conveniently using their position
in the sequence.

• Example:

 L[0] is “hi”, L[1] is 10, L[2] is “bye”, …, L[9] is “it”

Example

 This program walks through the list, printing each
element.

 The program uses the positions of the elements to
index into the list.

L = ["hi", 109, "go", 111, 1.16, [122,30], "hello"]
i = 0
while i < len(L):
 print L[i]
 i = i + 1

Accessing slices of lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

• L[2:5] is [“bye”, 100, -20]
• L[:2] is [“hi”, 10]
• L[4:4] is []
• L[4] = -20
• L[:len(L):2] = [“hi”, “bye”, -20, 176, 1]
• L[2:5][1] = 100
• L[1:5][:2] = [10, “bye”]

Problem

 Write a program that rolls two n-sided dice a million
times and records the number of times 2, 3, …, 2n
show up as the sum of the two dice rolls.

