
F E B 2 0 T H , 2 0 1 2

More on Functions

Keyword arguments

 You can avoid matching by position by using
keyword arguments in the function call.

 Example: manyRandomWalks(numRepititions = 200, n = 20)

 Here numRepititions and n are function

parameters.

 Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

 The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)

Keyword parameters

 There is a way to define default values of parameters.

 Example: def manyRandomWalks(n, numRepititions = 100)

 This function can now be called with one or two
arguments and in different styles.

 Examples: Try these out

 manyRandomWalks(10)

 (The default value of 100 us used for numRepititions; 10 is used for n)

 manyRandomWalks(40, 150)

 (40 is used for n, 150 for numRepititions)

Another example

def test(x = 3, y = 100, z = 200):
 return x - y + z

Examples of function calls:
1. test(10) (10 is used for x; default values 100 for y and 200 for

z)

2. test(10, 20) (10 is used for x, 20 for y; default value 200 for z)

3. test(z = 35) (default values 3 for x, 100 for y; 35 for z)

4. test(10, z = 35) (10 for x, default value 100 for y, 35 for z)

5. test(z = 50, 10, 12) (Error: positional arguments come first,
then keyword arguments)

Things that functions return

 Functions don’t have to explicitly return values. For
example:

 def printGreeting(name):

 print “Hello”, name, “how are you?”

 How would you call such a function?

 Example:

 printGreeting(“Michelle”)

 What would happen if you executed?

 x = printGreeting(“Michelle”)

The object None

 It is used by Python to represent the absence of a
value.

 It has a type called NoneType and None is the only

object of this type.

 None has a boolean value that is False.

Functions practice problem 1

 Write a function called search that reads a sequence of
words (strings) one per line, looking for the word “hello.”
The function should assume that the sequence will be
terminated by the empty string.

 Enhancements:

1. Make the function have a keyword parameter that
represents the word it is searching for. Have the default
value of this be “hello.”

2. Make the function have an additional parameter that
represents the number of words it is willing to read
while waiting for the word it is looking for.

Functions Practice Problem 2

 Write a function that simulates the roll of two 6-sided
dice 100 times and returns the number of times 4 shows
up as the sum of the outcomes on the two dice.

 Enhancements:

1. Make the function take the number of times it needs to
roll the dice as a parameter, with 100 being the default
value.

2. Make the function take the number of sides of the die
as a parameter, with 6 being the default value.

3. Make the function take the number of dice it needs to
roll as a parameter, with 2 being the default value.

Ordering functions in your code

 Will the following code work? Here the function is
defined after the main program that is calling it.

 print foo()
 def foo():
 return “hello”

 Will this work? Here functions are defined before the
main program. But, foo2() is called before it is defined
by foo1.

 def foo1():
 return foo2()
 def foo2():
 return “hello”
 print foo1()

How does Python process code with functions?

 def foo1():
 return foo2()
 def foo2():
 return “hello”
 print foo1()

1. Python starts scanning the code from the beginning of the

file.
2. It notes down names of functions as it encounters their

definitions. Note that the functions are not executed at this
time.

3. It reaches the first executable statement (print foo1()) and
since foo1 is known to Python, control is transferred to
foo1.

4. In foo1, Python encounters a call to foo2. Function foo2 is
also known to Python and so control is transferred to foo2.

Moral of this example?

 Define all functions before the main program.

 And then don’t worry about the order in which the
functions themselves are defined.

Scope of a variable

 The scope of a variable refers to the “where” and
“when” a variable is available for use.

 Things were simple when we did not have functions.

 If we only had a main program: the scope of a
variable extends from the point where the variable is
first defined till the end of the program.

 In Python the scope of a variable can be dynamic.

Example of dynamic scope

 x = raw_input()

 if x:

 y = "hello"

 print y

 If the input is a non-empty string, then the scope of
variable y starts at Line 3. Otherwise, the scope of y
is empty, i.e., y is undefined.

Scope of variables inside functions

 Parameters and variables defined inside a function
are “local” to that function.

 def foo():

 var1 = “hello”

 return var1 + var1

 # main program

 print foo()

 if var1 == “hellohello”:

 print foo()

var1 is a variable that is local to
foo(). It comes into existence
when the first line of foo() is

executed and it “dies” when we
exit the function.

var1 is not defined and this
usage will cause an error.

Function parameters are also local

 def foo(x):

 var1 = “hello”

 return var1 + x

 # main program

 print foo(“bye”)

 if x == “hellohello”:

 print foo()

The variable x is undefined
here because the parameter x
lives only for the duration of

the function

Mental model: version 1

1. Python creates a dictionary of variable names when it
starts evaluating the main program. It uses this
dictionary to insert, look up, and update variable
names.

2. When the function foo is executed, a new dictionary of
variable names, specific to foo is created.

3. First the parameter x is inserted into this dictionary.
Then variable var1 is inserted.

4. Whenever we access a variable inside foo, foo’s
dictionary is looked up.

5. When the execution of foo is over, foo’s dictionary is
destroyed.

