Recursion
Computing the n^{th} Fibonacci number

def fibo(n):
 # Base cases
 if n == 1 or n == 2:
 return 1
 # Recursive case
 else:
 return fibo(n-1) + fibo(n-2)
Efficiency of this function

- Sometimes recursive functions can be extremely inefficient.

- This is because the same sub-problem may be solved many times and our program has no recollection of having solved the same sub-problem earlier.

- This type of inefficiency shows up in the recursive implementation of the Fibonacci function.
Exponential growth: running time of fibo(n)

The plot shows the running time (in seconds) of fibo(n) for n = 20, 21,..., 30
Partial Recursion Tree for fibo(8)
Notice how the same sub-problem is solved many times. E.g., \texttt{fibo}(4) is solved 5 times, etc.

In later CS classes (e.g., 22C:19, 22C:21, or 22C:31) you will learn how to analyze recursive functions.

You will be able to show that the running time of this implementation of \texttt{fibo}(n) is exponential in \(n \), i.e., \(c^n \), where \(c \) is some constant larger than 1.
Example: Efficiently computing the power function

- The example involving Fibonacci numbers showed us that recursion can sometimes lead to inefficient programs.

- But recursion can also lead to tremendous efficiency.

Problem: Given a real number a and a non-negative integer n, compute a^n.
Computing a^n efficiently

- It is easy to write a loop that performs $n-1$ multiplications to compute a^n.

- However, we can compute a^n much more efficiently.

- **Example:** To compute a^{32}, we could compute a^{16} first and then use one multiplication to square it. To compute a^{16}, we would compute a^8 and then use one multiplication to square it...
It takes 5 multiplications to compute a^{32}

- Each multiplication reduces the power to $\frac{1}{2}$ of what it was earlier.
- This is a common theme in many efficient algorithms: if we can shrink the size of the problem to $\frac{1}{2}$ of what it was quickly, then we have an efficient problem.
What about an odd power?

- **Example:** Compute a^{39}

- We could compute a^{19}, square it (using one multiplication) to get a^{38} and then use another multiplication to compute a^{39}.

- Thus using 2 multiplications we can reduce the power to about $\frac{1}{2}$ of what it was earlier.
def power(a, n):
 # Base cases
 if n == 0:
 return 1
 if n == 1:
 return a

 # Recursive case: n is even
 if n % 2 == 0:
 temp = power(a, n/2)
 return temp * temp

 # Recursive case: n is odd
 if n % 2 == 1:
 temp = power(a, n/2)
 return a * temp * temp