
M A R C H 2 8

Efficiency of List Operations

Some ways of modifying lists are faster than
others…

 Consider this code snippet:

L = []
for i in range(100000):

L.insert(0, i)

This constructs a list of one hundred thousand integers:
99999, 99998, 99997, … , 3, 2, 1, 0.

How does this compare in speed to the other ways one can do
this in Python?

Other ways of doing the same thing…

L = []

for i in range(100000-1, 0, -1):

L.append(i)

L = []

for i in range(100000):

L = [i] + L

Here is a puzzle

 When I ran these different ways and measured the
running time, here is what I got (in seconds):

0.031, 5.063, 34.55.

Can you match the running times with the code
snippets?

 The medium-speed code is more than 150 times
slower than the fastest code. The slowest code is
more than 1000 times slower than the fastest code!

Mental model of how lists are implemented

12 15 11 4

• Suppose we execute L = [12, 15, 11, 4].

• A block of memory is allocated and the items 12, 15, 11, and
4 are stored consecutively at the beginning of this block.

• This allows efficient access to all elements of the list. The
location of L[i] in memory is simply i + starting location of L.

• This guarantees that every element in the list, no matter
what its index is, can be accessed equally quickly. This kind
of access is called random access.

Consequences of this implementation

 append is fast. Consider L.append(e). The length of L is

known and hence the location of the first empty slot
following L is also known. The element e is stored in

this slot.

 Notice that the running time of the append operation is

independent of the size of L. append takes the same
amount of time, no matter how large L is.

 We say that the running time of append is constant.
This does not mean that it is the same across different
machines.

Consequences of this implementation

 insert and remove can be slow because these might
cause a large portion of the list to “shift.”

 For example, L.insert(0, e) causes every element in the
list to move one slot. This creates a “hole” at the
beginning of the list for element e.

 This also means that insert operations towards the end of
the list are cheaper than those at the beginning of the list.

 In the worst case insert takes time that is proportional to
the length of L.

 In other words, insert is said to take linear time in the
worst case.

Analyzing the code snippets

L = []

for i in range(n-1, 0, -1):

L.append(i)

• Assume that append takes time c, a constant that has
nothing to do with n.
• Since the for-loop executes n times, the running time
of this code snippet is c n.
• Since c is a constant this is a linear function in n.

Analyzing the code snippets

L = []

for i in range(n):

L.insert(0, i)

• After the for-loop has executed i times, we have a list
of length i. We know that insert takes time c i on this
list.
• Therefore the total running time is

c (1 + 2 + 3 + … + n-1) = c n (n + 1)/2.
• Since c is a constant this is a quadratic function in n.

