
M A R C H 2 N D

Sequence Types

Problem

Write a program that counts the number of numbers
in the range 0 through 1000 that contain the digit 7.

 The program in its entirety:

def containsSeven(s):

return "7" in s

print len(filter(containsSeven, map(str, range(0, 1001))))

Strings and Lists

 A string is a sequence of characters enclosed in quotes.
Examples: “hello”, “8.397”, “7”, „34‟
(The quotes can be single or double quotes)

 A list is a sequence of objects enclosed in square brackets.
Examples: [0, 1, 2, 3], [“Alice”, “Bob”, “Catherine”],
[“hello”, 4.567, -22, 87L, „bye‟]
(Objects of different types can be part of the same list)

 Lists are more “general” than strings; strings can be viewed as
special instances of lists.

Simple operations on lists

 The in operator is used as x in L, where x is an
object and L is a list. This expression evaluates to
True if x is an element in L; evaluates to False
otherwise.

Examples: 67 in [34, 12, 45] evaluates to False
“hi” in [] evaluates to False, etc.

 Python has a built-in function len(L) that returns the
length, i.e., the number of elements, in list L.

Examples: len([]) is 0, len([34, 12, 45]) is 3, etc.

Both of these work on strings as well

Examples:

“hi” in “history” evaluates to True

“ei” in “piece” evaluates to False

“ace” in “Wallace” evaluates to True

Examples:

len(“history”) returns 7

len(“”) returns 0

len(“piece”) returns 5

Generating lists

 Python has a built-in function called range that allows us to generate lists
using arithmetic progressions.

 It can have one, two, or three arguments, all of which must be integers.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

Useful in for-loops

for i in range(1, 10, 2):

print i*i

 Repeats the execution of the body of the for-loop for
each value of i = 1, 3, 5, 7, and 9.

 Equivalent to
i = 1

while i < 10:

print i*i

i = i + 2

 But more convenient for simple loops because no need to
initialize before loop and no need to update within loop.

The map function

 map(f, [a, b, c, d, e]) returns the list [f(a), f(b),
f(c), f(d), f(e)]

 The first argument of map is a function f and the
second argument is a list L; it returns a new list
obtained by applying f onto every element of L.

Examples:
 map(round, [4.57, -9.876, math.pi]) returns [5.0, -10.0, 3.0]
 map(str, range(0, 6)) returns [„0‟, „1‟, „2‟, „3‟, „4‟, „5‟]

 The map function allows us to construct new lists from old
ones.

The filter function

 filter(f, L) returns a sublist of L consisting of those
elements in L (in the same order as they appear in L)
for which the boolean function f evaluates to True.

 Examples:
 filter(bool, [0, -10, 0.0, None, “hello”]) returns [-10, 'hello']

 filter(containsSeven, map(str, range(1001))) returns a list
containing all of the numbers in the range 0 through 1000 that
contain 7.

Problem

 Write a program that reads some text and extracts
words in the text to build a “dictionary.”

