
F I L E I / O

T H E O R D A N D C H R F U N C T I O N S

M A R C H 1 1

Miscellaneous Topics

File I/O

 More often than not programs read from files, rather
than from input typed at the keyboard.

 Often one program reads what another program outputs.

 More and more, programs are reading data produced by
other hardware, e.g., sensors, telescopes, microarrays,
etc.

 I these instances very little, if any, input is provided at
the keyboard.

File objects

 Simplest Python statement for opening a file:

f = open(“war.txt”)

 Assuming that there is a file called “war.txt” in the same

directory as your Python program, this statement opens
the file for reading.

 Subsequently, the file can be accessed via the variable f.

 Since f is a variable, it has a type. Try type(f).

File objects

 The variable f is often called a file object.

 If the file is missing from the directory, an error
message is issued.

>>> g = open("hello.txt")

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

IOError: [Errno 2] No such file or directory: 'hello.txt„

 One a file object is successfully connected to a file
residing on your machine, we can use the file
object to read from the file in a variety of ways.

Reading from a file

 s = f.read()
Reads everything from the file into the string s

 s = f.readline()
Reads the next line from the files into s

 for line in f:
print line.split()

Allows us to read and process the file line by line

Let us solve these problems on “War and Peace”

1. Build a dictionary of words extracted from the text
that we might be able to use later, maybe in a
spellchecker.

2. Compute the number of sentences in the text.

3. Compute the frequencies of letters in the text.

Two useful built-in Python functions that can help in
solving Problem 3 are ord and chr.

Two useful functions

 ord(ch)
if ch is a single character string, this function returns the
ASCII code for ch

 chr(i)
returns a string of one character whose ASCII code is the
integer i

What is ASCII?
It stands for the American Standard Code for Information

Interchange. It assigns a number in the range 0..255 to
every character that can be entered at the keyboard.

More on ASCII

 The numbers 0..31 are reserved for unprintable
characters, e.g., the tab character (“\t”), the end of
line character (“\n”), etc.

 32 is the ASCII value of the space character (“ “)

 33..47 is used for some punctuation characters

 48..57 is used for digits “0” through “9”

 65..90 is used for upper case letters

 97..122 is used for lower case letters

ASCII Table

Some examples of chr and ord in action

>>> ord("a")
97
>>> chr(97)
'a'
>>> ord(" ")
32
>>> ord("0")
48
>>> chr(48)
'0'
>>> chr(49)
'1'
>>> ord("A")
65
>>> ord("B")
66

How are these functions useful?

 Because of the the fact that all the upper case letters
occur consecutively in the ASCII table, the
expression ord(ch) – ord(“A”) has value 0 for ch=
“A”, value 1 for ch = “B”, has value 2 for ch = “C”, etc.

 Similarly, ord(ch)-ord(“a”) has value 0 for ch = “a” ,
has value 1 for ch = “b”, has value 2 for ch = “c”, etc.

A program to count letter frequencies

f = open("war.txt")

L = [0]*26

s = f.read()

for ch in s:

if ch.isupper():

L[ord(ch)-ord("A")] = L[ord(ch)-ord("A")] + 1

elif ch.islower():

L[ord(ch)-ord("a")] = L[ord(ch)-ord("a")] + 1

print L

Notice how ord(ch)-ord(“A”) and ord(ch)-ord(“a”) are used
to index into the list L.

Another example

 The ord and chr functions can be used to perform

Caeser’s Cipher (Problem 3, HW 7).

 Try this: chr(ord(“a”) + 4)

 What does this expression evaluate to?

