Our Second Python Program
O




Primality Testing

Given a positive integer (> 1), determine whether it is
a prime number or not.

Examples:
Input Output
31 prime
2001 composite

087654321 composite



Generate all “candidate” factors of n, namely
2.3, ..., N1-1
For each generated “candidate” factor, check if n is

evenly divisible by the factor (i.e., the remainder is
0).

If a “candidate” factor is found to be a real factor,
then n is composite.

If no “candidate” factor is found to be a real factor,
then n is a prime.



Input n
For each factor = 2, 3, ..., n-1 do the following
if n is evenly divisible by factor then
remember that n is a composite
If we have detected that n is a composite
output that n is a composite
Otherwise output that n is a prime



number = int(raw_input("Enter a positive integer: "))

factor =2
iISPrime = True
while(factor <= number - 1):
if(humber % factor == 0):
iIsPrime = False
factor = factor + 1

if(isPrime):

print number, "is prime"
else:

print number, “is composite”



Boolean variables are quite useful for remembering
situations that occurred in the program, for later
reference.

What happens if we get rid of the initialization:
iISPrime = true

Could we have used a boolean variable called
isComposite instead?



From time to time you may hear in the news about
the new largest prime

Large primes are the basis of modern day
cryptography.

Cryptography is the mathematical and
computational study of how to encode a message so
that only the intended receiver can understand the
message.

Without cryptography online business (think
Amazon, eBay, etc.) would not be possible.



A number n does not have any factors larger than
n/2, except itself.

We know vVn x Vn = n. Hence, if n is a factor
larger than vn, then it has a factor smaller than vn
also.

This means that only factors 2, 3,..., floor(vn) need to
be considered.



Say n = 123.
V123 = 11.090536506409418.

So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, ..., 11.



import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(number)
while(factor <= factorBound):
if(number % factor == 0):
isPrime = False
factor = factor + 1

if(isPrime):

print number, "is prime"
else:

print number, "is composite”



