
J A N 3 1 S T

Our Second Python Program

Our second programming problem

Primality Testing

Given a positive integer (> 1), determine whether it is
a prime number or not.

Examples:

Input Output

31 prime

2001 composite

987654321 composite

Algorithmic Idea

 Generate all “candidate” factors of n, namely

2, 3, …, n-1

 For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

 If a “candidate” factor is found to be a real factor,
then n is composite.

 If no “candidate” factor is found to be a real factor,
then n is a prime.

Algorithm in pseudocode

1. Input n

2. For each factor = 2, 3, …, n-1 do the following

3. if n is evenly divisible by factor then

4. remember that n is a composite

5. If we have detected that n is a composite

6. output that n is a composite

7. Otherwise output that n is a prime

Python code (Version 1)

number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
while(factor <= number - 1):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

Discussing this code

 Boolean variables are quite useful for remembering
situations that occurred in the program, for later
reference.

 What happens if we get rid of the initialization:

isPrime = true

 Could we have used a boolean variable called
isComposite instead?

The importance of primality testing

 From time to time you may hear in the news about
the new largest prime

 Large primes are the basis of modern day
cryptography.

 Cryptography is the mathematical and
computational study of how to encode a message so
that only the intended receiver can understand the
message.

 Without cryptography online business (think
Amazon, eBay, etc.) would not be possible.

Improving the efficiency of our program

1. A number n does not have any factors larger than
n/2, except itself.

2. We know √n x √n = n. Hence, if n is a factor
larger than √n, then it has a factor smaller than √n
also.

This means that only factors 2, 3,…, floor(√n) need to
be considered.

Example

 Say n = 123.

 √123 = 11.090536506409418.

 So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

 This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, …, 11.

Python code (Version 2)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(number)
while(factor <= factorBound):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

