
J A N 2 8 T H

Making our program more
robust

Here is our current program

n = int(raw_input("Enter a positive integer:"))

suffix = ""

originalN = n

while n > 0:

suffix = str(n%2) + suffix

n = n/2

print "The binary equivalent of", originalN, "is", suffix

Making the program more robust

 What if the user types in a negative integer or 0?

Or a real number? Or some non-numeric string,
(e.g., “hello”)?

 We will only discuss the negative integer or 0
situation now.

 Later when we discuss exceptions and how to handle
them, we’ll return to this program.

Types of errors

 Syntax error

Syntax refers to the structure of the program.

(e.g., English sentences start with a capital letter)

Examples:

while x < 10 n = int(raw_input()

x =x + 1 print n

Types of errors

 Run-time errors (or exceptions)

This is an error that occurs during the running of the
program and is typically caused by the user not
anticipating a certain behavior of their program.

Example:

n = int(raw_input(“Enter a number:”))

print n + 5

What if the user inputs “hello”?

Types of errors

 Semantic errors

The program may not produce an error message
when executed, but it may not do what we expect it
to do.

Example:

In an earlier version of our program:

print "The binary equivalent of", n, "is", suffix

We forgot that n would have changed to 0 at this point.

The case of non-positive integers

 What does the program currently do, if the user
inputs a negative integer or 0?

 We could instead try to print an informative
message.

 We will use the if-else statement for that.

Simple if statement

Line 1

if boolean expression:

Line 2

Line 3

Line 4

 If boolean expression is true:

Line 1, Line2, Line 3, Line 4.

 Otherwise: Line 1, Line 4.

if-else statement

Line 1
if boolean expression:

Line 2
Line 3

else:
Line 4

Line 5

 If boolean expression is true:
Line 1, Line 2, Line 3, Line 5

 Otherwise: Line 1, Line 4, Line 5

Dealing with negative integer input

 If n <= 0, print out an appropriate message and do
nothing else.

 Else, continue to do what the program is currently
doing.

Our Final First Program

n = int(raw_input("Enter a positive integer:"))

if n <= 0:

print “Enter a positive integer next time. Bye!”

else:

suffix = ""

originalN = n

while n > 0:

suffix = str(n%2) + suffix

n = n/2

print "The binary equivalent of", originalN, "is", suffix

Our second programming problem

Primality Testing

Given a positive integer (> 1), determine whether it is
a prime number or not.

Examples:

Input Output

31 prime

2001 composite

987654321 composite

