Improving our First Program

O




How do while statements affect program flow?

O

while boolean expression:
Line 2 1
Line 3 Is boolean
Line 4 expression true?
Flow
Line 1,

bool expr, Line 2, Line 3,
bool expr, Line 2, Line 3,

bool expr
Line 4




Line 1

while boolean expression:
Line 2
Line 3

Line 4

Lines 2 and 3 form the body of the while loop

Python uses indentation to identify the lines
following the while statement that constitute the

body of the while loop.



Python has a type called bool

The constants in this type are True and False.
(Not true and false!)

The comparison operators:
< > <= >= !: ==

can be used to construct boolean expressions, i.e.,
expressions that evaluate to True or False.



Suppose X has the value 10

Expression Value
x <10 False
x 1= 100 True
x <= 10 True
x> -10 True

x >= 11 False



n = int(raw_input("Enter a positive integer:"))
while n I= O:
n=n-2

What happens when input is 8?
What happens when the input is 9?

The biggest danger with while loops is that they may
run forever.



How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

String concatenation!

Expression Value
“0" + "1001" “01001"

“1" + "1001" “11001"



Algorithmic idea

O

» After 1 iterations of the while loop we have generated
the right most 1 bits of our answer.

» Call this the length-1 suffix.
» We want to maintain a string:

Length- Length-1
0 sufflx sufflx

Length-2

sufflx







n = int(raw_input("Enter a positive integer:"))
suffix = ""
while n > O:
suffix = str(n % 2) + binary
n=n/2
print suffix



What if the user types in a negative integer or 0?

Or a real number? Or some non-numeric string,
(e.g., "hello")?

We will only discuss the negative integer or o
situation now.

Later when we discuss exceptions and how to handle
them, we’ll return to this program.



