
F E B 2 1 S T

All about functions

The function randomWalk

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

return length

Notes about this function

 The first line of the function:

def randomWalk(n)

 The body of the function is indented.

 It is as though n is input to the function.

 A function can have one or more arguments

 The last line of the function is usually a return:

return length

Python keyword
function name argument list

The rest of the program

n = input("Enter a positive integer: ")

print randomWalk(n)

 randomWalk(n) is a call to the function randomWalk
providing it the number n that the user as input as an
argument.

 In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

 This means that “control” is transferred to the function and
we start executing the function starting with its first line.

 The value that the function returns essentially replaces the
function call.

Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

while count < 100:

sum = sum + randomWalk(n)

count = count + 1

print float(sum)/100

Making another function

This function repeats a random walk with barrier n as many times

as specified by the argument numRepititions and returns the length

of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

Repeats the random walk as many times as specified by numRepititions

while count < numRepitions:

sum = sum + randomWalk(n)

count = count + 1

return float(sum)/100

The rest of the program

n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)

 The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

 Names in the function call have nothing to do with names
in the function definition. We could have written

m = input("Enter a positive integer: ")

print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

m = 10 # tracks the value of the barrier

m travels through 10, 20, ..., 100 in this loop and we compute and print the

average walk length for each m

while m <= 100:

print manyRandomWalks(m, 100)

m = m + 10

Sample output

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86
376.4

827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk

The manyRandomWalks functions

 Definition:
def manyRandomWalks(n, numRepititions):

…
…
return float(sum)/100

 The first line of the function definition is called the function
header. The rest of the function is called the function body.

 The names n and numRepititions in the function header are
called parameters of the function.

 Call to this function:

print manyRandomWalks(m, 100)

 The expressions m and 100 are called function arguments.

More on the manyRandomWalks function

 Arguments in a function call could be complicated
expressions that will be evaluated to a value first
before being sent in to the function.

Example: manyRandomWalks(80/x, y + 1)

 In fact, arguments could be expressions involving

calls to other functions.

Example: manyRandomWalks(int(math.sqrt(x)), y + 1)

More on the randomWalks function

 One way in which Python matches arguments to parameters is by
reading them left to right and matching 1st argument to 1st parameter,
2nd argument to 2nd parameter, etc.

 This is called the positional style of parameter passing.

 So
manyRandomWalks(10, 100)

and
manyRandomWalks(100, 10)

will return very different values.

 In this way of parameter passing the number of arguments and the
number of parameters also have to exactly match.

Keyword arguments

 You can avoid matching by position by using
keyword arguments in the function call.

 Example: manyRandomWalks(numRepititions = 200, n = 20)

 Here numRepititions and n are function

parameters.

 Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

 The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)

Keyword parameters

 There is a way to define default values of parameters.

 Example: def manyRandomWalks(n, numRepititions = 100)

 This function can now be called with one or two
arguments and in different styles.

 Examples: Try these out

 manyRandomWalks(10)

(The default value of 100 us used for numRepititions; 10 is used for n)

 manyRandomWalks(40, 150)

(40 is used for n, 150 for numRepititions)

Another example

def test(x = 3, y = 100, z = 200):
return x - y + z

Examples of function calls:
1. test(10) (10 is used for x; default values 100 for y and 200 for

z)

2. test(10, 20) (10 is used for x, 20 for y; default value 200 for z)

3. test(z = 35) (default values 3 for x, 100 for y; 35 for z)

4. test(10, z = 35) (10 for x, default value 100 for y, 35 for z)

5. test(z = 50, 10, 12) (Error: positional arguments come first,
then keyword arguments)

Things that functions return

 Functions don’t have to explicitly return values. For
example:

def printGreeting(name):

print “Hello”, name, “how are you?”

 How would you call such a function?

Example:

printGreeting(“Michelle”)

 What would happen if you executed?

x = printGreeting(“Michelle”)

