
F E B 1 6 T H

Random Walks and Defining
Functions

If we take a random walk, will we go places?

 Problem: Simulate a random walk in which a
person starts of at point 0 and at each step randomly
picks a direction (left or right) and moves 1 step in
that direction.

 Take a positive integer n and terminate the
simulation when the walk reaches n or –n.

 Report the average number of steps it took for the
walk to terminate.

 Do this for various n and plot the results to get a
sense of how rapidly the walk terminates, as a
function of n.

Taking a single random step

import random

Version 1. This program starts off a person at 0 and moves

her one step to the left or right, at random.

location = 0

step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

if step == 0:

step = -1

location = location + step

print location

Simulating the random walk

import random

Version 2. This program starts off a person at 0 and moves

her left or right, at random one step at a time until she reaches

the "barrier" at n or - n.

n = input("Enter a positive integer: ")

location = 0

Loop terminates when the location reaches n or -n

while abs(location) != n:

step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

if step == 0:

step = -1

location = location + step

print location

Counting the length of the random walk

import random

Version 3. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or - n. It outputs the length of the walk.

n = input("Enter a positive integer: ")
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

print length

What more is there to do?

There are two more things we need to do to solve our
problem:

1. Find the average length of a walk, for a particular value
n of the barrier. We have to decide how many runs to
take the average over.

2. Repeat this for various values of n and try to
understand the trend.

We need a loop around our current code to do (1) and
another loop around that code to do (2).

Defining a function

 Things have become complicated enough that we
need to reorganize our code using functions.

 The plan is to define a function called randomWalk
that takes n (the barrier distance) as an argument
and returns the length of a simulated random walk.

 We can then just call this function from the main
part of the program.

The function randomWalk

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

return length

Notes about this function

 The first line of the function:

def randomWalk(n)

 The body of the function is indented.

 It is as though n is input to the function.

 A function can have one or more arguments

 The last line of the function is usually a return:

return length

Python keyword
function name argument list

The rest of the program

n = input("Enter a positive integer: ")

print randomWalk(n)

 randomWalk(n) is a call to the function randomWalk
providing it the number n that the user as input as an
argument.

 In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

 This means that “control” is transferred to the function and
we start executing the function starting with its first line.

 The value that the function returns essentially replaces the
function call.

Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

while count < 100:

sum = sum + randomWalk(n)

count = count + 1

print float(sum)/100

Making another function

This function repeats a random walk with barrier n as many times

as specified by the argument numRepititions and returns the length

of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

Repeats the random walk as many times as specified by numRepititions

while count < numRepitions:

sum = sum + randomWalk(n)

count = count + 1

return float(sum)/100

The rest of the program

n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)

 The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

 Names in the function call have nothing to do with names
in the function definition. We could have written

m = input("Enter a positive integer: ")

print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

m = 10 # tracks the value of the barrier

m travels through 10, 20, ..., 100 in this loop and we compute and print the

average walk length for each m

while m <= 100:

print manyRandomWalks(m, 100)

m = m + 10

Sample output

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86
376.4

827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk

