
A P R I L 6

Tuples, Dictionaries, and Sets

Tuples in Python

 Tuples are closely related to lists in Python

 The one obvious syntactic difference is that round
brackets are used to define tuples rather than square
brackets.

 Example: T = (0, -90, "hello")

 Elements of a tuple can be accessed just like
elements of a list

 Example: T[0]

 Example: T[0:2]

Main difference

 Tuples are immutable versions of lists.

 Tuples do not come with any of the methods that
modify lists in place: insert, remove, pop, etc.

 So why use tuples??

1. Faster than lists. Use if you know that you only
have to scan, not modify.

2. Can be used (instead of lists) in situations that
require immutable objects (e.g., dictionaries).

Easy to go from lists to tuples (and back)

 Example:

>>> L = [3, 4, "hello"]

>>> T = tuple(L)

>>> T

(3, 4, 'hello')

>>> LL = list(T)

>>> LL

[3, 4, 'hello']

>>>

Dictionaries

 Dictionary is a Python data structure that consists of
key-value pairs.

 Example:

D = {“to”: 10, “be”: 20, “it”: 31, “go”: 20}
 Here the keys are “to”, “be”, “it”, and “go”
 The values are 10, 20, 31, and 20

 The dictionary D is a function that associates a value
to each key.

 Keys in a dictionary have to be distinct, i.e., no
duplicate keys.

Accessing items in a dictionary

 Example:

D = {“to”: 10, “be”: 20, “it”: 31, “go”: 20}

D[“to”] evalutes to 10

 Typical way of accessing a dictionary is by using a
key inside square brackets as a way to get to the
associated value.

 A dictionary cannot be accessed using the values –
only via the keys.

Modifying a dictionary

 Example:
>>> D = {“to”: 10, “be”: 20, “it”: 31, “go”: 20}
>>> D["to"] = 25
>>> D

{'go': 20, 'to': 25, 'it': 31, 'be': 20}
>>> D["hello"] = 100
>>> D

{'go': 20, 'to': 25, 'hello': 100, 'it': 31, 'be': 20}

 The value associated with a key can be modified by an
assignment.

 A new key-value pair can also be added to the
dictionary by an assignment.

Deleting items from a dictionary

 Example:

>>> D = {“to”: 10, “be”: 20, “it”: 31, “go”: 20}

>>> del D["be"]

>>> D

{'go': 20, 'to': 10, 'it': 31}

 To clear all values in a dictionary, use D.clear().
After a dictionary is “cleared” its value is {}

A few dictionary functions

1. D.keys() returns a list with all the keys in D
2. D.values() returns a list with all the values in D
3. D.items() returns a list of key-value pairs (as tuples)

4. key in D, key not in D evaluate to boolean values
depending on whether key is in D

5. D.pop(key) removes the key-value pair corresponding
to key and returns the value

6. D.popitem() removes and returns an arbitrary key-
value pair from D

7. D.update(uD) updates D using the key-value pairs in
uD

Dictionaries: why use them?

 Search in lists is slow – takes time proportional to
the size of the list, in the worst case.

 Search in dictionaries is extremely fast.

 Use dictionaries in applications where searching by
key values is done repeatedly.

 Problem: Process a text file and create dictionaries
of 1-letter, 2-letter, and 3-letter words. The keys are
the words and the frequencies are the corresponding
values.

