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1. Shortest trees and branchings

1.1. Minimum spanning trees

Let G = (V,E) be a connected graph and let l : E −→ R be a function, called the length
function. For any subset F of E, the length l(F ) of F is, by definition:

l(F ) :=
∑

e∈F

l(e).(1)

In this section we consider the problem of finding a spanning tree in G of minimum length.
There is an easy algorithm for finding a minimum-length spanning tree, essentially due to
Boruvka [1926]. There are a few variants. The first one we discuss is sometimes called the
Dijkstra-Prim method (after Prim [1957] and Dijkstra [1959]).

Choose a vertex v1 ∈ V arbitrarily. Determine edges e1, e2 . . . successively as follows.
Let U1 := {v1}. Suppose that, for some k ≥ 0, edges e1, . . . , ek have been chosen, spanning
a tree on the set Uk. Choose an edge ek+1 ∈ δ(Uk) that has minimum length among all
edges in δ(Uk).

1 Let Uk+1 := Uk ∪ ek+1.
By the connectedness of G we know that we can continue choosing such an edge until

Uk = V . In that case the selected edges form a spanning tree T in G. This tree has
minimum length, which can be seen as follows.

Call a forest F greedy if there exists a minimum-length spanning tree T of G that
contains F .

Theorem 1.1. Let F be a greedy forest, let U be one of its components, and let e ∈ δ(U).
If e has minimum length among all edges in δ(U), then F ∪ {e} is again a greedy forest.

Proof. Let T be a minimum-length spanning tree containing F . Let P be the unique path
in T between the end vertices of e. Then P contains at least one edge f that belongs to
δ(U). So T ′ := (T \ {f}) ∪ {e} is a tree again. By assumption, l(e) ≤ l(f) and hence
l(T ′) ≤ l(T ). Therefore, T ′ is a minimum-length spanning tree. As F ∪ {e} ⊆ T ′, it follows
that F ∪ {e} is greedy.

Corollary 1.1a. The Dijkstra-Prim method yields a spanning tree of minimum length.

Proof. It follows inductively with Theorem 1.1 that at each stage of the algorithm we have
a greedy forest. Hence the final tree is greedy — equivalently, it has minimum length.

The Dijkstra-Prim method is an example of a so-called greedy algorithm. We construct
a spanning tree by throughout choosing an edge that seems the best at the moment. Finally
we get a minimum-length spanning tree. Once an edge has been chosen, we never have to
replace it by another edge (no ‘back-tracking’).

There is a slightly different method of finding a minimum-length spanning tree, Kruskal’s
method (Kruskal [1956]). It is again a greedy algorithm, and again iteratively edges e1, e2, . . .
are chosen, but by some different rule.

1δ(U) is the set of edges e satisfying |e ∩ U | = 1.
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Suppose that, for some k ≥ 0, edges e1, . . . , ek have been chosen. Choose an edge
ek+1 such that {e1, . . . , ek, ek+1} forms a forest, with l(ek+1) as small as possible. By the
connectedness of G we can (starting with k = 0) iterate this until the selected edges form
a spanning tree of G.

Corollary 1.1b. Kruskal’s method yields a spanning tree of minimum length.

Proof. Again directly from Theorem 1.1.

In a similar way one finds a maximum-length spanning tree.

Application 1.1: Minimum connections. There are several obvious practical situations where
finding a minimum-length spanning tree is important, for instance, when designing a road system,
electrical power lines, telephone lines, pipe lines, wire connections on a chip. Also when clustering
data say in taxonomy, archeology, or zoology, finding a minimum spanning tree can be helpful.

Application 1.2: The maximum reliability problem. Often in designing a network one is not
primarily interested in minimizing length, but rather in maximizing ‘reliability’ (for instance when
designing energy or communication networks). Certain cases of this problem can be seen as finding a
maximum length spanning tree, as was observed by Hu [1961]. We give a mathematical description.

Let G = (V,E) be a graph and let s : E −→ R+ be a function. Let us call s(e) the strength of
edge e. For any path P in G, the reliability of P is, by definition, the minimum strength of the edges
occurring in P . The reliability rG(u, v) of two vertices u and v is equal to the maximum reliability
of P , where P ranges over all paths from u to v.

Let T be a spanning tree of maximum strength, i.e., with
∑

e∈ET s(e) as large as possible. (Here
ET is the set of edges of T .) So T can be found with any maximum spanning tree algorithm.

Now T has the same reliability as G, for each pair of vertices u, v. That is:

rT (u, v) = rG(u, v) for each u, v ∈ V .(2)

We leave the proof as an exercise (Exercise 1.5).

Exercises

1.1. Find, both with the Dijkstra-Prim algorithm and with Kruskal’s algorithm, a spanning tree
of minimum length in the graph in Figure 1.1.

3 2

2 4 1

5 3

3 6 3

5 4 24 6 3

4 3 5 7 4 2

Figure 1.1
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1.2. Find a spanning tree of minimum length between the cities given in the following distance
table:

Ame Ams Ape Arn Ass BoZ Bre Ein Ens s-G Gro Haa DH s-H Hil Lee Maa Mid Nij Roe Rot Utr Win Zut Zwo
Amersfoort 0 47 47 46 139 123 86 111 114 81 164 67 126 73 18 147 190 176 63 141 78 20 109 65 70
Amsterdam 47 0 89 92 162 134 100 125 156 57 184 20 79 87 30 132 207 175 109 168 77 40 151 107 103
Apeldoorn 47 89 0 25 108 167 130 103 71 128 133 109 154 88 65 129 176 222 42 127 125 67 66 22 41
Arnhem 46 92 25 0 132 145 108 78 85 116 157 112 171 63 64 154 151 200 17 102 113 59 64 31 66
Assen 139 162 108 132 0 262 225 210 110 214 25 182 149 195 156 68 283 315 149 234 217 159 143 108 69
Bergen op Zoom 123 134 167 145 262 0 37 94 230 83 287 124 197 82 119 265 183 59 128 144 57 103 209 176 193
Breda 86 100 130 108 225 37 0 57 193 75 250 111 179 45 82 228 147 96 91 107 49 66 172 139 156
Eindhoven 111 125 103 78 210 94 57 0 163 127 235 141 204 38 107 232 125 153 61 50 101 91 142 109 114
Enschede 114 156 71 85 110 230 193 163 0 195 135 176 215 148 132 155 237 285 102 187 192 134 40 54 71
’s-Gravenhage 81 57 128 116 214 83 75 127 195 0 236 41 114 104 72 182 162 124 133 177 26 61 180 146 151
Groningen 164 184 133 157 25 287 250 235 135 236 0 199 147 220 178 58 309 340 174 259 242 184 168 133 94
Haarlem 67 20 109 112 182 124 111 141 176 41 199 0 73 103 49 141 226 165 130 184 67 56 171 127 123
Den Helder 126 79 154 171 149 197 179 204 215 114 147 73 0 166 109 89 289 238 188 247 140 119 220 176 144
’s-Hertogenbosch 73 87 88 63 195 82 45 38 148 104 220 103 166 0 69 215 123 141 46 81 79 53 127 94 129
Hilversum 18 30 65 64 156 119 82 107 132 72 178 49 109 69 0 146 192 172 81 150 74 16 127 83 88
Leeuwarden 147 132 129 154 68 265 228 232 155 182 58 141 89 215 146 0 306 306 171 256 208 162 183 139 91
Maastricht 190 207 176 151 283 183 147 125 237 162 309 226 289 123 192 306 0 243 135 50 191 176 213 183 218
Middelburg 176 175 222 200 315 59 96 153 285 124 340 165 238 141 172 306 243 0 187 203 98 156 264 231 246
Nijmegen 63 109 42 17 149 128 91 61 102 133 174 130 188 46 81 171 135 187 0 85 111 76 81 48 83
Roermond 141 168 127 102 234 144 107 50 187 177 259 184 247 81 150 256 50 203 85 0 151 134 166 133 168
Rotterdam 78 77 125 113 217 57 49 101 192 26 242 67 140 79 74 208 191 98 111 151 0 58 177 143 148
Utrecht 20 40 67 59 159 103 66 91 134 61 184 56 119 53 16 162 176 156 76 134 58 0 123 85 90
Winterswijk 109 151 66 64 143 209 172 142 40 180 168 171 220 127 127 183 213 264 81 166 177 123 0 44 92
Zutphen 65 107 22 31 108 176 139 109 54 146 133 127 176 94 83 139 183 231 48 133 143 85 44 0 48
Zwolle 70 103 41 66 69 193 156 144 71 151 94 123 144 129 88 91 218 246 83 168 148 90 92 48 0

1.3. Let G = (V,E) be a graph and let l : E −→ R be a ‘length’ function. Call a forest T good if
l(ET ′) ≥ l(ET ) for each forest T ′ satisfying |ET ′| = |ET |. (ET is the set of edges of T .)

Let T be a good forest and e be an edge not in T such that T ∪ {e} is a forest and such that
l(e) is as small as possible. Show that T ∪ {e} is good again.

1.4. Let G = (V,E) be a complete graph and let l : E −→ R+ be a length function satisfying
l(uw) ≥ min{l(uv), l(vw)} for all distinct u, v, w ∈ V . Let T be a longest spanning tree in G.

Show that for all u,w ∈ V , l(uw) is equal to the minimum length of the edges in the unique
u− w path in T .

1.5. Prove (2).

1.2. Finding optimum branchings

Let D = (V,A) be a directed graph. A subset S ′ of A is called an branching, with root
r, or an r-branching (or r-arborescence) if (V,A′) is a rooted tree with root r.

Thus if A′ is an r-branching then there is exactly one r − s path in A′, for each s ∈ V .
Moreover, D contains an r-branching if and only if each vertex of D is reachable in D from
r.

Given a directed graph D = (V,A), a root s, and a length function l : A −→ Q+, a
minimum-length s-arborescence can be found as follows (Edmonds [1967]).

Let A0 := {a ∈ A|l(a) = 0}. If A0 contains an s-arborescence B, then B is a minimum-
length s-arborescence. If A0 does not contain an s-arborescence, there is a strong component
K of (V,A0) such that s 6∈ K and such that l(a) > 0 for each a ∈ δin(K). Let ε :=
min{l(a)|a ∈ δin(K)}. Set l′(a) := l(a) − ε if a ∈ δin(K) and l′(a) := l(a) otherwise.

Find (recursively) a minimum-length s-arborescence B with respect to l′. Since K
is a strong component of (V,A0), we can choose B so that |B ∩ δin(K)| = 1, since if
B ∩ δin(K)| ≥ 2, then for each a0 ∈ B ∩ δin(K), (B \ {a0})∩A0 contains an s-arborescence,
say B′, with l′(B′) ≤ l′(B) − l′(a0) ≤ l′(B).
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Then B is also a minimum-length s-arborescence with respect to l, since for any s-
arborescence C:

l(C) = l′(C) + ε|C ∩ δin(K)| ≥ l′(C) + ε ≥ l′(B) + ε = l(B).(3)

Since the number of iterations is O(m), we have:

Theorem 1.2. An optimum s-arborescence can be found in polynomial time.

Proof. See above.

In fact, direct analysis gives:

Theorem 1.3. An optimum s-arborescence can be found in time O(nm).

Proof. First note that there are at most 2n− 3 iterations. This can be seen as follows. Let
K be the collection of components K to which we applied the algorithm in some iteration.
Then |K| ≤ 2n− 3, since if K,L ∈ K then K ∩ L = ∅, or K ⊆ L, or L ⊆ K. Moreover, to
any K ∈ K, the iteration is applied exactly once, since after application, some arc leaving
K has length 0.

Next, each iteration can be performed in time O(m). Indeed, in time O(m) we can
identify the set U of vertices not reachable in (V,A0) from s. Next, one can identify the
strong components of the subgraph of (V,A0) induced by U , in time O(m). Moreover, we
can order the vertices in U pre-topologically. Then the first vertex in this order belongs to
a strong component K so that each arc a entering K has l(a) > 0.

For more on algorithms for optimum branchings, see Edmonds [1967], Fulkerson [1974],
Chu and Liu [1965], Bock [1971], Tarjan [1977].
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2. Matchings and covers

2.1. Matchings, covers, and Gallai’s theorem

Let G = (V,E) be a graph. A coclique is a subset C of V such that e 6⊆ C for each edge
e of G. A vertex cover is a subset W of V such that e ∩W 6= ∅ for each edge e of G. It is
not difficult to show that for each U ⊆ V :

U is a coclique ⇐⇒ V \ U is a vertex cover.(1)

A matching is a subset M of E such that e∩e′ = ∅ for all e, e′ ∈M with e 6= e′. A matching
is called perfect if it covers all vertices (that is, has size 1

2 |V |). An edge cover is a subset
F of E such that for each vertex v there exists e ∈ F satisfying v ∈ e. Note that an edge
cover can exist only if G has no isolated vertices.

Define:

α(G) := max{|C| |C is a coclique},
ρ(G) := min{|F | |F is an edge cover},
τ(G) := min{|W | |W is a vertex cover},
ν(G) := max{|M | |M is a matching}.

(2)

These numbers are called the coclique number, the edge cover number, the vertex cover
number, and the matching number of G, respectively.

It is not difficult to show that:

α(G) ≤ ρ(G) and ν(G) ≤ τ(G).(3)

The triangle K3 shows that strict inequalities are possible. In fact, equality in one of the
relations (3) implies equality in the other, as Gallai [1958,1959] proved:

Theorem 2.1 (Gallai’s theorem). For any graph G = (V,E) without isolated vertices one
has

α(G) + τ(G) = |V | = ν(G) + ρ(G).(4)

Proof. The first equality follows directly from (1).
To see the second equality, first let M be a matching of size ν(G). For each of the

|V | − 2|M | vertices v missed by M , add to M an edge covering v. We obtain an edge cover
of size |M | + (|V | − 2|M |) = |V | − |M |. Hence ρ(G) ≤ |V | − ν(G).

Second, let F be an edge cover of size ρ(G). For each v ∈ V delete from F , dF (v) − 1
edges incident with v. We obtain a matching of size at least |F | − ∑

v∈V (dF (v) − 1) =
|F | − (2|F | − |V |) = |V | − |F |. Hence ν(G) ≥ |V | − ρ(G).

This proof also shows that if we have a matching of maximum cardinality in any graph
G, then we can derive from it a minimum cardinality edge cover, and conversely.
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2.2. König’s theorems

A classical min-max relation due to Kőnig [1931] (extending a result of Frobenius [1917])
characterizes the maximum size of a matching in a bipartite graph:

Theorem 2.2 (König’s matching theorem). For any bipartite graph G = (V,E) one has

ν(G) = τ(G).(5)

That is, the maximum cardinality of a matching in a bipartite graph is equal to the minimum
cardinality of a vertex cover.

Proof. Let G = (V,E) be a bipartite graph, with colour classes U and W , say. By (3) it
suffices to show that ν(G) ≥ τ(G), which we do by induction on |V |. We distinguish two
cases.

Case 1: There exists a vertex cover C with |C| = τ(G) intersecting both U and W .
Let U ′ := U ∩C, U ′′ := U \ C, W ′ := W \ C and W ′′ := W ∩ C. Let G′ and G′′ be the

subgraphs of G induced by U ′ ∪W ′ and U ′′ ∪W ′′ respectively.
We show that τ(G′) ≥ |U ′|. Let K be a vertex cover of G′ of size τ(G′). Then K ∪W ′′

is a vertex cover of G, since K intersects all edges of G that are contained in U ′ ∪W ′ and
W ′′ intersects all edges of G that are not contained in U ′ ∪W ′ (since each edge intersects
C = U ′ ∪W ′′). So |K ∪W ′′| ≥ τ(G) = |U ′| + |W ′′| and hence |K| ≥ |U ′|.

So τ(G′) ≥ |U ′|. It follows by our induction hypothesis that G′ contains a matching of
size |U ′|. Similarly, G′′ contains a matching of size |W ′′|. Combining the two matchings we
obtain a matching of G of size |U ′| + |W ′′| = τ(G).

Case 2: There exists no such vertex cover C.
Let e = uw be any edge of G. Let G′ be the subgraph of G induced by V \ {u,w}. We

show that τ(G′) ≥ τ(G)− 1. Suppose to the contrary that G′ contains a vertex cover K of
size τ(G)− 2. Then C := K ∪ {u,w} would be a vertex cover of G of size τ(G) intersecting
both U and W , a contradiction.

So τ(G′) ≥ τ(G)− 1, implying by our induction hypothesis that G′ contains a matching
M of size τ(G) − 1. Hence M ∪ {e} is a matching of G of size τ(G).

Combination of Theorems 2.1 and 2.2 yields the following result of Kőnig [1932].

Corollary 2.2a (König’s edge cover theorem). For any bipartite graph G = (V,E), without
isolated vertices, one has

α(G) = ρ(G).(6)

That is, the maximum cardinality of a coclique in a bipartite graph is equal to the minimum
cardinality of an edge cover.

Proof. Directly from Theorems 2.1 and 2.2, as α(G) = |V |− τ(G) = |V |−ν(G) = ρ(G).
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Exercises

2.1. (i) Prove that a k-regular bipartite graph has a perfect matching (if k ≥ 1).

(ii) Derive that a k-regular bipartite graph has k disjoint perfect matchings.

(iii) Give for each k > 1 an example of a k-regular graph not having a perfect matching.

2.2. Prove that in a matrix, the maximum number of nonzero entries with no two in the same line
(=row or column), is equal to the minimum number of lines that include all nonzero entries.

2.3. Let A = (A1, . . . , An) be a family of subsets of some finite set X. A subset Y of X is called
a transversal or a system of distinct representatives (SDR) of A if there exists a bijection
π : {1, . . . , n} −→ Y such that π(i) ∈ Ai for each i = 1, . . . , n.

Decide if the following collections have an SDR:

(i) {3, 4, 5}, {2, 5, 6}, {1, 2, 5}, {1, 2, 3}, {1, 3, 6},
(ii) {1, 2, 3, 4, 5, 6}, {1, 3, 4}, {1, 4, 7}, {2, 3, 5, 6}, {3, 4, 7}, {1, 3, 4, 7}, {1, 3, 7}.

2.4. Let A = (A1, . . . , An) be a family of subsets of some finite set X. Prove that A has an SDR
if and only if

|
⋃

i∈I

Ai| ≥ |I|(7)

for each subset I of {1, . . . , n}.
[Hall’s ‘marriage’ theorem (Hall [1935]).]

2.3. Tutte’s 1-factor theorem and the Tutte-Berge formula

A basic result on matchings was found by Tutte [1947]. It characterizes graphs that
have a perfect matching. A perfect matching (or a 1−factor) is a matching M covering all
vertices of the graph.

In order to give Tutte’s characterization, let for each subset U of the vertex set V of a
graph G let

o(U) := number of odd components of the subgraph G|U of G induced by
U .

(8)

Here a component is odd (even, respectively) if it has an odd (even) number of vertices.
An important inequality is that for each matching M and each subset U of V one has

|M | ≤ |V | + |V \ U | − o(U)

2
.(9)

This follows from the fact that at most (|U |−o(U))/2 edges of M are contained in U , while
at most |V \ U | edges of M intersect V \ U . So |M | ≤ (|U | − o(U))/2 + |V \ U |, implying
(9).

It will turn out that there is always a matchingM and a subset U of V attaining equality
in (9).

Theorem 2.3 (Tutte’s 1-factor theorem). A graph G = (V,E) has a perfect matching if
and only if

o(U) ≤ |V \ U | for each U ⊆ V .(10)
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Proof. Necessity of (10) follows directly from (9). To see sufficiency, suppose there exist
graphs G = (V,E) satisfying the condition, but not having a perfect matching. Fixing
V , take G such that G is simple and |E| is as large as possible. Let U := {v ∈ V |v is
nonadjacent to at least one other vertex of G}. We show:

if a, b, c ∈ U and ab, bc ∈ E then ac ∈ E.(11)

For suppose ac 6∈ E. By the maximality of |E|, adding ac to E makes that G has a perfect
matching (condition (10) is maintained under adding edges). So G has a matching M
missing only a and c. As b ∈ U , there exists a d with bd 6∈ E. Again by the maximality of
|E|, G has a matching N missing only b and d. Now each component of M4N contains the
same number of edges in M as in N — otherwise there would exist an M - or N -augmenting
path, and hence a perfect matching in G, a contradiction. So the component P of M4N
containing d is a path starting in d, with first edge in M and last edge in N , and hence
ending in a or c; by symmetry we may assume it ends in a. Moreover, P does not traverse
b. Then extending P by the edge ab gives an N -augmenting path, and hence a perfect
matching in G — a contradiction. This shows (11).

By (11), each component of G|U is a complete graph. Moreover, by (10), G|U has at
most |V \ U | odd components. This implies that G has a perfect matching, contradicting
our assumption.

This proof is due to Lovász [1975]. For another proof, see Anderson [1971].

We derive from Tutte’s 1-factor theorem a min-max formula for the maximum cardinality
of a matching in a graph, the Tutte-Berge formula.

Corollary 2.3a (Tutte-Berge formula). For each graph G = (V,E)

ν(G) = min
U⊆V

|V | + |V \ U | − o(U)

2
.(12)

Proof. (9) implies that ≤ holds in (12). To see the reverse inequality, let m be the minimum
value in (12). Extend G by a set W of |V | − 2m new vertices, so that each vertex in W is
adjacent to each vertex in V ∪W . This makes the graph G′. If G′ has a perfect matching
M ′, then at most |V |−2m edges in M ′ intersect W . Deleting these edges, gives a matching
M in G with |M | ≥ |M ′| − (|V | − 2m) = 1

2(|V | + |W |) − (|V | − 2m) = m.

So we may assume that G′ does not have a perfect matching. Then by Tutte’s 1-factor
theorem, there is a subset U of V ∪W such that the subgraph G|U of G′ induced by U has
more than |(V ∪W )\U | odd components. If U intersects W , G|U has only one component,
and hence |(V ∪W )\U | = 0, that is, U = V ∪W . But then o(U) = 0 since |V ∪W | is even.
So U ∩W = ∅, giving o(U) ≤ |V | + |V \ U | − 2m = |(V ∪W ) \ U |, a contradiction.

Stating this corollary differently, each graph G = (V,E) has a matching M and a
subset U of V having equality in (9). So M is a maximum-size matching and U attains
the minimum in (12). In the following sections we will show how to find such M and U
algorithmically. It yields an alternative proof of the results in this section.
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With Gallai’s theorem, the Tutte-Berge formula implies a formula for the edge cover
number ρ(G):

Corollary 2.3b. Let G = (V,E) be a graph without isolated vertices. Then

ρ(G) = max
U⊆V

|U | + o(U)

2
.(13)

Proof. By Gallai’s theorem (Theorem 2.1) and the Tutte-Berge formula (Corollary 2.3a),

ρ(G) = |V | − ν(G) = |V | − min
W⊆V

|V | + |W | − o(V \W )

2
= max

U⊆V

|U | + o(U)

2
.(14)

Exercises

2.5. (i) Show that a tree has at most one perfect matching.

(ii) Show (not using Tutte’s 1-factor theorem) that a tree G = (V,E) has a perfect matching
if and only if the subgraph G− v has exactly one odd component, for each v ∈ V .

2.6. Let G be a 3-regular graph without any isthmus. Show that G has a perfect matching.

2.7. Let G = (V,E) be a graph and let T be a subset of V . Then G has a matching covering T , if
and only if the number of odd components of G−W contained in T is at most |W |, for each
W ⊆ V .
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3. Edge-colouring

3.1. Vizing’s theorem

We recall some definitions and notation. LetG = (V,E) be a graph. An edge-colouring is
a partition of E into matchings. Each matching in an edge-colouring, is called a colour or an
edge-colour. A k-edge-colouring is an edge-colouring with k colours. G is k-edge-colourable
if a k-edge-colouring exists. The smallest k for which there exists a k-edge-colouring is
called the edge-colouring numberof G, denoted by χ(G). Since an edge-colouring of G is a
(vertex-)colouring of the line-graph L(G) of G, we have that χ(G) = γ(L(G)).

The maximum degree of G is denoted by ∆(G).
Vizing [1964,1965] showed the following (we follow the proof of Ehrenfeucht, Faber, and

Kierstead [1984]):

Theorem 3.1 (Vizing’s theorem). For any simple graph G one has ∆(G) ≤ χ(G) ≤
∆(G) + 1.

Proof. The inequality ∆(G) ≤ χ(G) being trivial, we show χ(G) ≤ ∆(G) + 1. Let G =
(V,E) be a simple graph. We show the theorem by induction on |V |. Let k := ∆(G) + 1.

Given any partial k-edge-colouring, let Fu be the set of colours that miss u, and let
Fvu := Fv ∩ Fu.

Choose a vertex v ∈ V , and suppose we have k-edge-coloured the graph G − v. Next
colour a maximum number of edges incident with v in such a way that

for each uncoloured edge vu one has Fvu 6= ∅, and there is at most one
uncoloured edge vu with |Fvu| = 1.

(1)

Such a colouring exists, since colouring no edge incident with v gives (1).
Let U := {u ∈ V |e = vu is an uncoloured edge}. Assume that U 6= ∅. So |Fv| ≥ |U |+1,

since at most k− 1−|U | edges incident with v are coloured (as v has degree at most k− 1).
Suppose there exists an i ∈ ⋃

u∈U Fvu such that i belongs to Fvu for at most one u ∈ U
with |Fvu| ≤ 2. Then we can give colour i to edge vu for which |Fvu| is smallest, without
violating (1). This contradicts our maximality assumption.

So we know that for each i ∈ ⋃
u∈U Fvu there exist two distinct vertices u ∈ U with i ∈

Fvu and |Fvu| ≤ 2. Hence |⋃u∈U Fvu| ≤ |U |, and therefore there is a colour j ∈ Fv\
⋃

u∈U Fu.
Choose w ∈ U such that |Fvu| ≥ 2 for each u ∈ U with u 6= w. Choose i ∈ Fvw.

Consider the ji path P starting at w, interchange colours j and i on P , and give edge vw
colour j. Then for all u ∈ U with u 6= w the set Fvu is unchanged, except for at most one
u 6= w (if the end vertex of P belongs to U), for which Fvu is replaced by Fvu \ {i}. So (1)
is maintained.

In this theorem we cannot delete the condition that G be simple: the graph G obtained
from K3 by replacing each edge by two parallel edges, has χ(G) = 6 and ∆(G) = 4.
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3.2. NP-completeness of edge-colouring

Holyer [1981] showed:

Theorem 3.2. It is NP-complete to decide if a given 3-regular graph is 3-edge-colourable.

Proof. We show that the 3-satisfiability problem (3-SAT) can be reduced to the edge-
colouring problem of 3-regular graphs. To this end, consider the graph fragment called the
inverting component given by the left picture of Figure 3.1, where the right picture gives its
symbolic representation if we take it as part of larger graphs.

a

b

c

d

e

Figure 3.1 The inverting component and its symbolic representation.

This graph fragment has the property that a colouring of the edges a, b, c, d and
e can be properly extended to a colouring of the edges spanned by the fragment, if
and only if either a and b have the same colour while c, d, and e have three distinct
colours, or c and d have the same colour while a, b, and e have three distinct colours.

The pairs a, b and c, d are called the output pairs.
Consider now an instance of the 3-satisfiability problem. From the inverting component

we build larger graph fragments. First we construct for each variable u a variable-setting
component given by Figure 3.2.

The figure shows the case where u occurs (as u or ¬u in exactly four clauses). The
general case, where u occurs (as u or ¬u) in exactly k clauses, is constructed similarly, with
2k inverting components and k output pairs.

Next we construct, for each clause C a satisfaction-testing component given by Figure
3.3.

Now if a variable u occurs in a clause C as u, we connect one of the output pairs of u
with one of the output pairs of C. If a variable u occurs in a clause C as ¬u, we connect
one of the output pairs of u with one side of an inverting component, and connect the other
side of it with one of the output pairs of C.

In this way we can match up all output pairs of the variable-setting and satisfaction-
testing components, yielding a fragment F with only single edges leaving it. We complete
the graph G by making a copy F ′ of F and connecting any single edge end to its copy in
F ′.

Now, given the properties of the fragments, one easily checks that the input of the 3-
satisfiability problem is satisfiable if and only if G is 3-edge-colourable.
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Figure 3.2 The variable-setting component for a variable u occurring in four clauses.

This graph fragment has the property that a colouring of the edges leaving the frag-
ment can be extended to a proper colouring of the edges spanned by the fragment,
if and only if either each of the output pairs leaving the fragment is monochromatic,
or none of them is monochromatic.

Figure 3.3 The satisfaction-testing component for a clause C.

This graph fragment has the property that a colouring of the edges leaving the frag-
ment can be extended to a proper colouring of the edges spanned by the fragment, if
and only if at least one of the output pairs leaving the fragment is monochromatic.
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4. Multicommodity flows and disjoint paths

4.1. Introduction

The problem of finding a maximum flow from one ‘source’ r to one ‘sink’ s is highly
tractable. There is a very efficient algorithm, which outputs an integer maximum flow if all
capacities are integer. Moreover, the maximum flow value is equal to the minimum capacity
of a cut separating r and s. If all capacities are equal to 1, the problem reduces to finding
arc-disjoint paths. Some direct transformations give similar results for vertex capacities
and for vertex-disjoint paths.

Often in practice however, one is not interested in connecting only one pair of source
and sink by a flow or by paths, but several pairs of sources and sinks simultaneously. One
may think of a large communication or transportation network, where several messages or
goods must be transmitted all at the same time over the same network, between different
pairs of terminals. A recent application is the design of very large-scale integrated (VLSI)
circuits, where several pairs of pins must be interconnected by wires on a chip, in such a
way that the wires follow given ‘channels’ and that the wires connecting different pairs of
pins do not intersect each other.

Mathematically, these problems can be formulated as follows. First, there is the multi-
commodity flow problem (or k-commodity flow problem):

given: a directed graph G = (V,E), pairs (r1, s1), . . . , (rk, sk) of vertices of G,
a ‘capacity’ function c : E −→ Q+, and ‘demands’ d1, . . . , dk,

find: for each i = 1, . . . , k, an ri − si flow xi ∈ QE
+ so that xi has value di

and so that for each arc e of G:

k∑

i=1

xi(e) ≤ c(e).

(1)

The pairs (ri, si) are called commodities. (We assume ri 6= si throughout.)

If we require each xi to be an integer flow, the problem is called the integer multicom-
modity flow problem or integer k-commodity flow problem. (To distinguish from the integer
version of this problem, one sometimes adds the adjective fractional to the name of the
problem if no integrality is required.)

The problem has a natural analogue to the case where G is undirected. We replace
each undirected edge e = {v, w} by two opposite arcs (v, w) and (w, v) and ask for flows
x1, . . . , xk of values d1, . . . , dk, respectively, so that for each edge e = {v, w} of G:

k∑

i=1

(xi(v, w) + xi(w, v)) ≤ c(e).(2)

Thus we obtain the undirected multicommodity flow problem or undirected k-commodity flow
problem. Again, we add integer if we require the xi to be integer flows.
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If all capacities and demands are 1, the integer multicommodity flow problem is equiv-
alent to the arc- or edge-disjoint paths problem:

given: a (directed or undirected) graph G = (V,E), pairs (r1, s1), . . . , (rk, sk)
of vertices of G,

find: pairwise edge-disjoint paths P1, . . . , Pk where Pi is an ri − si path
(i = 1, . . . , k).

(3)

Related is the vertex-disjoint paths problem:

given: a (directed or undirected) graph G = (V,E), pairs (r1, s1), . . . , (rk, sk)
of vertices of G,

find: pairwise vertex-disjoint paths P1, . . . , Pk where Pi is an ri − si path
(i = 1, . . . , k).

(4)

We leave it as an exercise (Exercise 4.1) to check that the vertex-disjoint paths problem
can be transformed to the directed edge-disjoint paths problem.

The (fractional) multicommodity flow problem can be easily described as one of solving
a system of linear inequalities in the variables xi(e) for i = 1, . . . , k and e ∈ E. The
constraints are the flow conservation laws for each flow xi separately, together with the
inequalities given in (1). Therefore, the fractional multicommodity flow problem can be
solved in polynomial time with any polynomial-time linear programming algorithm.

In fact, the only polynomial-time algorithm known for the fractional multicommodity
flow problem is any general linear programming algorithm. Ford and Fulkerson [1958]
designed an algorithm based on the simplex method, with column generation.

The following cut condition trivially is a necessary condition for the existence of a
solution to the fractional multicommodity flow problem (1):

for each W ⊆ V the capacity of δout
E (W ) is not less than the demand of

δout
R (W ),

(5)

where R := {(r1, s1), . . . , (rk, sk)}. However, this condition is in general not sufficient, even
not in the two simple cases given in Figure 4.1 (taking all capacities and demands equal to
1).

r

s

r =s

2

2 1

1

r =s2 12=s1r

Figure 4.1

One may derive from the max-flow min-cut theorem that the cut condition is sufficient
if r1 = r2 = · · · = rk (similarly if s1 = s2 = · · · = sk) — see Exercise 4.3.
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Similarly, in the undirected case a necessary condition is the following cut condition:

for each W ⊆ V, the capacity of δE(W ) is not less than the demand of δR(W )(6)

(taking R := {{r1, s1}, . . . , {rk, sk}}). In the special case of the edge-disjoint paths problem
(where all capacities and demands are equal to 1), the cut condition reads:

for each W ⊆ V, |δE(W )| ≥ |δR(W )|.(7)

Figure 4.2 shows that this condition again is not sufficient.

r

=rs

=r21s

=r
32

s

s
4 4

3 1

Figure 4.2

However, Hu [1963] showed that the cut condition is sufficient for the existence of a
fractional multicommodity flow, in the undirected case with k = 2 commodities. He gave
an algorithm that yields a half-integer solution if all capacities and demands are integer.
This result was extended by Rothschild and Whinston [1966]. We discuss these results in
Section 4.2.

Similar results were obtained by Okamura and Seymour [1981] for arbitrary k, provided
that the graph is planar and all terminals ri, si are on the boundary of the unbounded face.

The integer multicommodity flow problem is NP-complete, even in the undirected case
with k = 2 commodities and all capacities equal to 1, with arbitrary demands d1, d2 (Even,
Itai, and Shamir [1976]). This implies that the undirected edge-disjoint paths problem is
NP-complete, even if |{{r1, s1}, . . . , {rk, sk}}| = 2.

In fact, the disjoint paths problem is NP-complete in all modes (directed/undirected,
vertex/edge disjoint), even if we restrict the graph G to be planar (D.E. Knuth (see Karp
[1975]), Lynch [1975], Kramer and van Leeuwen [1984]). For general directed graphs the
arc-disjoint paths problem is NP-complete even for k = 2 ‘opposite’ commodities (r, s) and
(s, r) (Fortune, Hopcroft, and Wyllie [1980]).

On the other hand, it is a deep result of Robertson and Seymour [1995] that the undi-
rected vertex-disjoint paths problem is polynomially solvable for any fixed number k of
commodities. Hence also the undirected edge-disjoint paths problem is polynomially solv-
able for any fixed number k of commodities.

Robertson and Seymour observed that if the graph G is planar and all terminals ri, si

are on the boundary of the unbounded face, there is an easy ‘greedy-type’ algorithm for the
vertex-disjoint paths problem.
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It is shown by Schrijver [1994] that for each fixed k, the k disjoint paths problem is
solvable in polynomial time for directed planar graphs. For the directed planar arc-disjoint
version, the complexity is unknown. That is, there is the following research problem:

Research problem. Is the directed arc-disjoint paths problem polynomially solvable for
planar graphs with k = 2 commodities? Is it NP-complete?

Application 4.1: Multicommodity flows. Certain goods or messages must be transported
through the same network, where the goods or messages may have different sources and sinks.

This is a direct special case of the problems described above.

Application 4.2: VLSI-routing. On a chip certain modules are placed, each containing a number
of ’pins’. Certain pairs of pins should be connected by an electrical connection (a ‘wire’) on the chip,
in such a way that each wire follows a certain (very fine) grid on the chip and that wires connecting
different pairs of pins are disjoint.

Determining the routes of the wires clearly is a special case of the disjoint paths problem.

Exercises

4.1. Show that each of the following problems (a), (b), (c) can be reduced to problems (b), (c),
(d), respectively:

(a) the undirected edge-disjoint paths problem,

(b) the undirected vertex-disjoint paths problem,

(c) the directed vertex-disjoint paths problem,

(d) the directed arc-disjoint paths problem.

4.2. Show that the undirected edge-disjoint paths problem for planar graphs can be reduced to the
directed arc-disjoint paths problem for planar graphs.

4.3. Derive from the max-flow min-cut theorem that the cut condition (5) is sufficient for the
existence of a fractional multicommodity flow if r1 = · · · = rk.

4.4. Show that if the undirected graph G = (V,E) is connected and the cut condition (7) is
violated, then it is violated by some W ⊆ V for which both W and V \W induce connected
subgraphs of G.

4.5. (i) Show with Farkas’ lemma2: the fractional multicommodity flow problem (1) has a solu-
tion, if and only if for each ‘length’ function l : E −→ Q+ one has:

k∑

i=1

di · distl(ri, si) ≤
∑

e∈E

l(e)c(e).(8)

(Here distl(r, s) denotes the length of a shortest r − s path with respect to l.)

(ii) Interprete the cut condition (5) as a special case of this condition.

2Farkas’ lemma states: let A be an m × n matrix and let b ∈ Rm; then there exists a vector x ∈ Rn

satisfying Ax ≤ b, if and only if for each vector y ∈ Rm
+ with yT A = 0 one has yT b ≥ 0.
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4.2. Two commodities

Hu [1963] gave a direct combinatorial method for the undirected two-commodity flow
problem and he showed that in this case the cut condition suffices. In fact, he showed
that if the cut condition holds and all capacities and demands are integer, there exists a
half-integer solution. We first give a proof of this result due to Sakarovitch [1973].

Consider a graph G = (V,E), with commodities {r1, s1} and {r2, s2}, a capacity function
c : E −→ Z+ and demands d1 and d2.

Theorem 4.1 (Hu’s two-commodity flow theorem). The undirected two-commodity flow
problem, with integer capacities and demands, has a half-integer solution, if and only if the
cut condition (6) is satisfied.

Proof. Suppose the cut condition holds. Orient the edges of G arbitrarily, yielding the
directed graph D = (V,A). For any a ∈ A we denote by c(a) the capacity of the underlying
undirected edge.

Define for any x ∈ RA and any v ∈ V :

f(x, v) :=
∑

a∈δout(v)

x(a) −
∑

a∈δin(v)

x(a).(9)

So f(x, v) is the ‘net loss’ of x in vertex v.
By the max-flow min-cut theorem there exists a function x′ : A −→ Z satisfying:

f(x′, r1) = d1, f(x′, s1) = −d1, f(x′, r2) = d2, f(x′, s2) = −d2,
f(x′, v) = 0 for each other vertex v,
|x′(a)| ≤ c(a) for each arc a of D.

(10)

This can be seen by extending the undirected graph G by adding two new vertices r′ and s′

and four new edges {r′, r1}, {s1, s′} (both with capacity d1) and {r′, r2}, {s2, s′} (both with
capacity d2) as in Figure 4.3.

1

r’ s’

2
sr

12r s

G

Figure 4.3

Then the cut condition for the two-commodity flow problem implies that the minimum
capacity of any r′−s′ cut in the extended graph is equal to d1 +d2. Hence, by the max-flow
min-cut theorem, there exists an integer-valued r′ − s′ flow in the extended graph of value
d1 + d2. This gives x′ satisfying (10).
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Similarly, the max-flow min-cut theorem implies the existence of a function x′′ : A −→ Z

satisfying:

f(x′′, r1) = d1, f(x′′, s1) = −d1, f(x′′, r2) = −d2, f(x′′, s2) = d2,
f(x′′, v) = 0 for each other vertex v,
|x′′(a)| ≤ c(a) for each arc a of D.

(11)

To see this we extend G with vertices r′′ and s′′ and edges {r′′, r1}, {s1, s′′} (both with
capacity d1) and {r′′, s2}, {r2, s′′} (both with capacity d2) (cf. Figure 4.4).

r"

r
1 2

s"

s

r
2

s
1

G

Figure 4.4

After this we proceed as above.
Now consider the vectors

x1 := 1
2(x′ + x′′) and x2 := 1

2(x′ − x′′).(12)

Since f(x1, v) = 1
2(f(x′, v)+f(x′′, v)) for each v, we see from (10) and (11) that x1 satisfies:

f(x1, r1) = d1, f(x1, s1) = −d1, f(x1, v) = 0 for all other v.(13)

So x1 gives a half-integer r1 − s1 flow in G of value d1. Similarly, x2 satisfies:

f(x2, r2) = d2, f(x2, s2) = −d2, f(x2, v) = 0 for all other v.(14)

So x2 gives a half-integer r2 − s2 flow in G of value d2.
Moreover, x1 and x2 together satisfy the capacity constraint, since for each edge a of D:

|x1(a)| + |x2(a)| = 1
2 |x′(a) + x′′(a)| + 1

2 |x′(a) − x′′(a)|
= max{|x′(a)|, |x′′(a)|} ≤ c(a).

(15)

(Note that 1
2 |α+ β| + 1

2 |α− β| = max{|α|, |β|} for all reals α, β.)
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So we have a half-integer solution to the two-commodity flow problem.

This proof also directly gives a polynomial-time algorithm for finding a half-integer flow.
The cut condition is not enough to derive an integer solution, as is shown by Figure 4.5

(taking all capacities and demands equal to 1).

s

s

1 2

r

r

2 1

Figure 4.5

Moreover, as mentioned, the undirected integer two-commodity flow problem is NP-complete
(Even, Itai, and Shamir [1976]).

However, Rothschild and Whinston [1966] showed that an integer solution exists if the
cut condition holds, provided that the following Euler condition is satisfied:

∑
e∈δ(v) c(e) ≡ 0 (mod 2) if v 6= r1, s1, r2, s2,

≡ d1 (mod 2) if v = r1, s1,
≡ d2 (mod 2) if v = r2, s2.

(16)

(Equivalently, the graph obtained from G by replacing each edge e by c(e) parallel edges and
by adding di parallel edges connecting ri and si (i = 1, 2), should be an Eulerian graph.)

Exercises

4.6. Derive from Theorem 4.1 the following max-biflow min-cut theorem of Hu: Let G = (V,E)
be a graph, let r1, s1, r2, s2 be distinct vertices, and let c : E −→ Q+ be a capacity function.
Then the maximum value of d1 + d2 so that there exist ri − si flows xi of value di (i = 1, 2),
together satisfying the capacity constraint, is equal to the minimum capacity of a cut both
separating r1 and s1 and separating r2 and s2.

4.7. Derive from Theorem 4.1 that the cut condition suffices to have a half-integer solution to
the undirected k-commodity flow problem (with all capacities and demands integer), if there
exist two vertices u and w so that each commodity {ri, si} intersects {u,w}. (Dinits (cf.
Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]).)
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5. Matroids

5.1. Matroids and the greedy algorithm

Let G = (V,E) be a connected undirected graph and let w : E −→ Z be a ‘weight’
function on the edges. We saw that a minimum-weight spanning tree can be found quite
straightforwardly with Kruskal’s so-called greedy algorithm.

The algorithm consists of selecting successively edges e1, e2, . . . , er. If edges e1, . . . , ek

have been selected, we select an edge e ∈ E so that:

(i) e 6∈ {e1, . . . , ek} and {e1, . . . , ek, e} is a forest,

(ii) w(e) is as small as possible among all edges e satisfying (i).

(1)

We take ek+1 := e. If no e satisfying (1)(i) exists, that is, if {e1, . . . , ek} forms a spanning
tree, we stop, setting r := k. Then {e1, . . . , er} is a spanning tree of minimum weight.

By replacing ‘as small as possible’ in (1)(ii) by ‘as large as possible’, one obtains a
spanning tree of maximum weight.

It is obviously not true that such a greedy approach would lead to an optimal solution
for any combinatorial optimization problem. We could think of such an approach to find a
matching of maximum weight. Then in (1)(i) we replace ‘forest’ by ‘matching’ and ‘small’
by ‘large’. Application to the weighted graph in Figure 5.1 would give e1 = cd, e2 = ab.

1

3

a b

cd

3

4

Figure 5.1

However, ab and cd do not form a matching of maximum weight.
It turns out that the structures for which the greedy algorithm does lead to an optimal

solution, are the matroids. It is worth studying them, not only because it enables us to
recognize when the greedy algorithm applies, but also because there exist fast algorithms
for ‘intersections’ of two different matroids.

The concept of matroid is defined as follows. Let X be a finite set and let I be a
collection of subsets of X. Then the pair (X, I) is called a matroid if it satisfies the following
conditions:

(i) ∅ ∈ I,

(ii) if Y ∈ I and Z ⊆ Y then Z ∈ I,

(iii) if Y,Z ∈ I and |Y | < |Z| then Y ∪ {x} ∈ I for some x ∈ Z \ Y .

(2)
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For any matroid M = (X, I), a subset Y of X is called independent if Y belongs to I,
and dependent otherwise.

Let Y ⊆ X. A subset B of Y is called a basis of Y if B is an inclusionwise maximal
independent subset of B. That is, for any set Z ∈ I with B ⊆ Z ⊆ Y one has Z = B.

It is not difficult to see that condition (2)(iii) is equivalent to:

for any subset Y of X, any two bases of Y have the same cardinality.(3)

(Exercise 5.1.) The common cardinality of the bases of a subset Y of X is called the rank
of Y , denoted by rM (Y ).

We now show that if G = (V,E) is a graph and I is the collection of forests in G, then
(E, I) indeed is a matroid. Conditions (2)(i) and (ii) are trivial. To see that condition (3)
holds, let E′ ⊆ E. Then, by definition, each basis Y of E ′ is an inclusionwise maximal forest
contained in E′. Hence Y forms a spanning tree in each component of the graph (V,E ′).
So Y has |V | − k elements, where k is the number of components of (V,E ′). So each basis
of E′ has |V | − k elements, proving (3).

A set is called simply a basis if it is a basis of X. The common cardinality of all bases
is called the rank of the matroid. If I is the collection of forests in a connected graph
G = (V,E), then the bases of the matroid (E, I) are exactly the spanning trees in G.

We next show that the matroids indeed are those structures for which the greedy algo-
rithm leads to an optimal solution. Let X be some finite set and let I be a collection of
subsets of X satisfying (2)(i) and (ii).

For any weight function w : X −→ R we want to find a set Y in I maximizing

w(Y ) :=
∑

y∈Y

w(y).(4)

The greedy algorithm consists of selecting y1, . . . , yr successively as follows. If y1, . . . , yk

have been selected, choose y ∈ X so that:

(i) y 6∈ {y1, . . . , yk} and {y1, . . . , yk, y} ∈ I,

(ii) w(y) is as large as possible among all y satisfying (i).

(5)

We stop if no y satisfying (5)(i) exist, that is, if {y1, . . . , yk} is a basis.
Now:

Theorem 5.1. The pair (X, I) satisfying (2)(i) and (ii) is a matroid, if and only if the
greedy algorithm leads to a set Y in I of maximum weight w(Y ), for each weight function
w : X −→ R+.

Proof. Sufficiency. Suppose the greedy algorithm leads to an independent set of maximum
weight for each weight function w. We show that (X, I) is a matroid.

Conditions (2)(i) and (ii) are satisfied by assumption. To see condition (2)(iii), let
Y,Z ∈ I with |Y | < |Z|. Suppose that Y ∪ {z} 6∈ I for each z ∈ Z \ Y .

Consider the following weight function w on X. Let k := |Y |. Define:

w(x) := k + 2 if x ∈ Y ,
w(x) := k + 1 if x ∈ Z \ Y ,
w(x) := 0 if x ∈ X \ (Y ∪ Z).

(6)



24 Chapter 5. Matroids

Now in the first k iterations of the greedy algorithm we find the k elements in Y . By
assumption, at any further iteration, we cannot choose any element in Z \ Y . Hence any
further element chosen, has weight 0. So the greedy algorithm will yield a basis of weight
k(k + 2).

However, any basis containing Z will have weight at least |Z∩Y |(k+2)+|Z\Y |(k+1) ≥
|Z|(k+1) ≥ (k+1)(k+1) > k(k+2). Hence the greedy algorithm does not give a maximum-
weight independent set.

Necessity. Now let (X, I) be a matroid. Let w : X −→ R+ be any weight function on X.
Call an independent set Y greedy if it is contained in a maximum-weight basis. It suffices
to show that if Y is greedy, and x is an element in X \ Y such that Y ∪ {x} ∈ I and such
that w(x) is as large as possible, then Y ∪ {x} is greedy.

As Y is greedy, there exists a maximum-weight basis B ⊇ Y . If x ∈ B then Y ∪ {x}
is greedy again. If x 6∈ B, then there exists a basis B ′ containing Y ∪ {x} and contained
in B ∪ {x}. So B′ = (B \ {x′}) ∪ {x} for some x′ ∈ B \ Y . As w(x) is chosen maximum,
w(x) ≥ w(x′). Hence w(B′) ≥ w(B), and therefore B′ is a maximum-weight basis. So
Y ∪ {x} is greedy.

Note that by replacing “as large as possible” in (5) by “as small as possible”, one obtains
an algorithm for finding a minimum-weight basis in a matroid. Moreover, by ignoring
elements of negative weight, the algorithm can be adapted to yield an independent set of
maximum weight, for any weight function w : X −→ R.

Exercises

5.1. Show that condition (3) is equivalent to condition (2)(iii) (assuming (2)(i) and (ii)).

5.2. Let X be a finite set and let B be a nonempty collection of subsets of X. Show that B is the
collection of bases of some matroid on X, if and only if:

if B,B′ ∈ B and x ∈ B \ B′, then there exists an y ∈ B′ \ B such that
(B \ {x}) ∪ {y} ∈ B.

(7)

5.3. Let X be a finite set and let r : P(X) −→ Z. Show that r = rM for some matroid M on X,
if and only if:

(i) 0 ≤ r(Y ) ≤ |Y | for each subset Y of X;

(ii) r(Z) ≤ r(Y ) whenever Z ⊆ Y ⊆ X;

(iii) r(Y ∩ Z) + r(Y ∪ Z) ≤ r(Y ) + r(Z) for all Y, Z ⊆ X.

(8)

5.4. Let M = (X, I) be a matroid. A subset C of X is called a circuit if C is an inclusionwise
minimal dependent set. Show that if C and C ′ are different circuits of M and x ∈ C ∩C ′ and
y ∈ C \ C ′, then (C ∪ C ′) \ {x} contains a circuit containing y.

5.5. Let M = (X, I) be a matroid, let B be a basis of M , and let x ∈ X \ B. Show that there
exists a unique circuit C with the property that x ∈ C and C ⊆ B ∪ {x}.

5.6. Let M = (X, I) be a matroid. Two elements x, y of X are called parallel if {x, y} is a
circuit. Show that if x and y are parallel and Y is an independent set with x ∈ Y , then also
(Y \ {x}) ∪ {y} is independent.
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5.7. Let M = (X, I) be a matroid, and order the elements of X as x1, x2, x3, . . . , xn. Define

Y := {xi | rM ({x1, . . . , xi}) > rM ({x1, . . . , xi−1})}.(9)

Prove that Y is a basis of M .

5.2. Examples of matroids

In this section we describe some classes of examples of matroids.

I. Graphic matroids. As a first example we consider the matroids described in Section
5.1.

Let G = (V,E) be a graph. Let I be the collection of all forests in G. Then M = (E, I)
is a matroid, as we saw in Section 5.1.

The matroid M is called the cycle matroid of G, denoted by M(G). Any matroid
obtained in this way, or isomorphic to such a matroid, is called a graphic matroid.

Note that the bases of M(G) are exactly those forests F of G for which the graph (V, F )
has the same number of components as G. So if G is connected, the bases are the spanning
trees.

Note also that the circuits of M(G), in the matroid sense, are exactly the circuits of G,
in the graph sense.

II. Cographic matroids. There is an alternative way of obtaining a matroid from a graph
G = (V,E). Let I be the collection of those subsets F of E that satisfy:

the graph (V,E \ F ) has the same number of components as G.(10)

Then:

Theorem 5.2. (E, I) is a matroid.

Proof. Condition (2)(i) is trivial. Condition (2)(ii) follows from the fact that if F ′ ⊆ F ,
then the graph (V,E \ F ) has at least as many components as (V,E \ F ′).

To see condition (2)(iii), let G have k components and let F and F ′ be subsets of E so
that (V,E \ F ) and (V,E \ F ′) have k components and so that |F | < |F ′|. We must show
that (V,E \ (F ∪ {e})) has k components for some e ∈ F ′ \ F .

Suppose to the contrary that (V,E \ (F ∪ {e})) has more than k components, for every
e ∈ F ′ \ F . That is, each e in F ′ \ F is an isthmus in the graph (V,E \ F ). Hence
(V,E \ (F ∪ F ′)) has k + |F ′ \ F | components. Now E \ F ′ = (E \ (F ∪ F ′)) ∪ (F \ F ′).
This implies that (V,E \ F ′) has at least k + |F \ F | − |F \ F ′| components. However,
k + |F ′ \ F | − |F \ F ′| = k + |F ′| − |F | > k, contradicting the fact that F ′ belongs to I.

The matroid (E, I) is called the cocycle matroid of G, denoted by M ∗(G). Any matroid
obtained in this way, or isomorphic to such a matroid, is called a cographic matroid.

Note that the bases of M∗(G) are exactly those subsets E ′ of E for which E \ E′ is a
forest and (V,E \E′) has the same number of components as G. So if G is connected, these
are exactly the complements of the spanning trees in G.
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By definition, a subset C of E is a circuit of M ∗(G) if it is an inclusionwise minimal set
with the property that (V,E \ C) has more components than G. Hence C is a circuit of
M∗(G) if and only if C is an inclusionwise minimal nonempty cutset in G.

III. Linear matroids. Let A be an m × n matrix. Let X = {1, . . . , n} and let I be
the collection of all those subsets Y of X so that the columns with index in Y are linearly
independent. That is, so that the submatrix of A consisting of the columns with index in
Y has rank |Y |.

Now:

Theorem 5.3. (X, I) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are easy to check. To see condition (2)(iii), let Y
and Z be subsets of X so that the columns with index in Y are linearly independent, and
similarly for Z, and so that |Y | < |Z|.

Suppose that Y ∪ {x} 6∈ I for each x ∈ Z \ Y . This means that each column with index
in Z \ Y is spanned by the columns with index in Y . Trivially, each column with index
in Z ∩ Y is spanned by the columns with index in Y . Hence each column with index in
Z is spanned by the columns with index in Y . This contradicts the fact that the columns
indexed by Y span an |Y |-dimensional space, while the columns indexed by Z span an
|Z|-dimensional space, with |Z| > |Y |.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a linear
matroid.

Note that the rank rM (Y ) of any subset Y of X is equal to the rank of the matrix
formed by the columns indexed by Y .

IV. Transversal matroids. Let X1, . . . ,Xm be subsets of the finite set X. A set Y =
{y1, . . . , yn} is called a partial transversal (of X1, . . . ,Xm), if there exist distinct indices
i1, . . . , in so that yj ∈ Xij for j = 1, . . . , n. A partial transversal of cardinality m is called
a transversal (or a system of distinct representatives, or an SDR).

Another way of representing partial transversals is as follows. Let G be the bipartite
graph with vertex set V := {1, . . . ,m}∪X and with edges all pairs {i, x} with i ∈ {1, . . . ,m}
and x ∈ Xi. (We assume here that {1, . . . ,m} ∩X = ∅.)

For any matching M in G, let ρ(M) denote the set of those elements in X that belong
to some edge in M . Then it is not difficult to see that:

Y ⊆ X is a partial transversal, if and only if Y = ρ(M) for some matching
M in G.

(11)

Now let I be the collection of all partial transversals for X1, . . . ,Xm. Then:

Theorem 5.4. (X, I) is a matroid.

Proof. Again, conditions (2)(i) and (ii) are trivial. To see (2)(iii), let Y and Z be partial
transversals with |Y | < |Z|. Consider the graph G constructed above. By (11) there exist
matchings M and M ′ in G so that Y = ρ(M) and Z = ρ(M ′). So |M | = |Y | < |Z| = |M ′|.
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Consider the union M ∪M ′ of M and M ′. Each component of the graph (V,M ∪M ′)
is either a path, or a circuit, or a singleton vertex. Since |M ′| > |M |, at least one of these
components is a path P with more edges in M ′ than in M . The path consists of edges
alternatingly in M ′ and in M , with end edges in M ′.

Let N and N ′ denote the edges in P occurring in M and M ′, respectively. So |N ′| =
|N | + 1. Since P has odd length, exactly one of its end vertices belongs to X; call this end
vertex x. Then x ∈ ρ(M ′) = Z and x 6∈ ρ(M) = Y . Define M ′′ := (M \N) ∪N ′. Clearly,
M ′′ is a matching with ρ(M ′′) = Y ∪ {x}. So Y ∪ {x} belongs to I.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a transversal
matroid. If the sets X1, . . . ,Xm form a partition of X, one speaks of a partition matroid.

These four classes of examples show that the greedy algorithm has a wider applicability
than just for finding minimum-weight spanning trees. There are more classes of matroids
(like ‘algebraic matroids’, ‘gammoids’), for which we refer to Welsh [1976].

Exercises

5.8. Show that a partition matroid is graphic and cographic.

5.9. Let M = (V, I) be the transversal matroid derived from subsets X1, . . . , Xm of X as in
Example IV.

(i) Show with König’s matching theorem that:

rM (X) = min
J⊆{1,...,m}

(|
⋃

j∈J

Xj | +m− |J |).(12)

(ii) Derive a formula for rM (Y ) for any Y ⊆ X.

5.10. (i) Let (X1, . . . , Xm) be a partition of the finite set X. Let I be the collection of all subsets
Y of X such that |Y ∩ Xi| ≤ 1 for each i = 1, . . . ,m. Show that (X, I) is a matroid.
Such matroids are called partition matroids.

(ii) Show that partition matroids are graphic, cographic, linear, and transversal matroids.

5.11. Let G = (V,E) be a graph. Let I be the collection of those subsets Y of E so that F has at
most one circuit. Show that (E, I) is a matroid.

5.12. Let G = (V,E) be a graph. Call a collection C of circuits a circuit basis of G if each circuit of
G is a symmetric difference of circuits in C. (We consider circuits as edge sets.)

Give a polynomial-time algorithm to find a circuit basis C of G that minimizes
∑

C∈C |C|.
(The running time of the algorithm should be bounded by a polynomial in |V | + |E|.)

5.3. Duality, deletion, and contraction

There are a number of operations that transform a matroid to another matroid. First
we consider the ‘dual’ of a given matroid.

In Exercise 5.2 we saw that a nonempty collection B of subsets of some finite set X is
the collection of bases of some matroid on X, if and only if (7) is satisfied. Now define

B∗ := {X \B | B ∈ B}.(13)
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We show:

Theorem 5.5. If B is the collection of bases of some matroid M , then B∗ also is the
collection of bases of some matroid on X, denoted by M ∗.

The rank function rM∗ of the dual matroid M∗ satisfies:

rM∗(Y ) = |Y | + rM (X \ Y ) − rM (X).(14)

Proof. Let J denote the collection of subsets J of X so that J ⊆ D for some D ∈ B∗.
Define

ρ(Y ) := max{|Z| |Z ∈ J , Z ⊆ Y }(15)

for Y ⊆ X. The function ρ clearly satisfies conditions (8)(i) and (ii). To see (8)(iii), observe
that

ρ(Y ) = max
C∈B∗

|Y ∩ C| = max
B∈B

|Y \B|(16)

= max
B∈B

|(X \ Y ) ∩B| + |Y | − rM (X) = rM (X \ Y ) + |Y | − rM (X).

Since rM satisfies condition (8)(iii), (16) implies that also ρ satisfies condition (8)(iii).
Hence ρ is the rank function of some matroid N = (X, I ′). Now for each Y ⊆ X:

Y ∈ I ′ ⇐⇒ ρ(Y ) = |Y | ⇐⇒ Y ∈ J .(17)

Hence I ′ = J , and therefore (X,J ) is a matroid with basis collection B∗ and rank function
given by (14).

The matroidM∗ is called the dual matroid of M . Since (B∗)∗ = B, we know (M∗)∗ = M .
In fact, in the examples I and II above we saw that for any undirected graph G, the

cocycle matroid of G is the dual matroid of the cycle matroid of G. That is, M ∗(G) =
(M(G))∗.

Another way of constructing matroids from matroids is by ‘deletion’ and ‘contraction’.
Let M = (X, I) be a matroid and let Y ⊆ X. Define

I ′ := {Z | Z ⊆ Y,Z ∈ I}.(18)

Then M ′ = (Y, I ′) is a matroid again, as one easily checks. M ′ is called the restriction of
M to Y . If Y = X \ Z with Z ⊆ X, we say that M ′ arises by deleting Z, and denote M ′

by M \ Z.
Contracting Z means replacing M by (M ∗ \Z)∗. This matroid is denoted by M/Z. One

may check that if G is a graph and e is an edge of G, then contracting edge {e} in the
cycle matroid M(G) of G corresponds to contracting e in the graph. That is, M(G)/{e} =
M(G/{e}), where G/{e} denotes the graph obtained from G by contracting e.

If matroid M ′ arises from M by a series of deletions and contractions, M ′ is called a
minor of M .

Exercises
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5.13. Let G = (V,E) be a connected graph. For each subset E ′ of E, let κ(V,E′) denote the number
of components of the graph (V,E ′). Show that for each E ′ ⊆ E:

(i) rM(G)(E
′) = |V | − κ(V,E′);

(ii) rM∗(G)(E
′) = |E′| − κ(V,E \E′) + 1.

5.14. Let G be a planar graph and let G∗ be a planar graph dual to G. Show that the cycle matroid
M(G∗) of G∗ is isomorphic to the cocycle matroid M ∗(G) of G.

5.15. Show that the dual matroid of a linear matroid is again a linear matroid.

5.16. Let G = (V,E) be a loopless undirected graph. Let A be the matrix obtained from the V ×E
incidence matrix of G by replacing in each column, exactly one of the two 1’s by −1.

(i) Show that a subset Y of E is a forest if and only if the columns of A with index in Y
are linearly independent.

(ii) Derive that any graphic matroid is a linear matroid.

(iii) Derive (with the help of Exercise 5.15) that any cographic matroid is a linear matroid.

5.17. (i) Let X be a finite set and let k be a natural number. Let I := {Y ⊆ X | |Y | ≤ k}. Show
that (X, I) is a matroid. Such matroids are called k-uniform matroids.

(ii) Show that k-uniform matroids are transversal matroids. Give an example of a k-uniform
matroid that is neither graphic nor cographic.

5.18. Let M = (X, I) be a matroid and let k be a natural number. Define I ′ := {Y ∈ I | |Y | ≤ k}.
Show that (X, I ′) is again a matroid (called the k-truncation of M).

5.19. Let M = (X, I) be a matroid, let U be a set disjoint from X, and let k ≥ 0. Define

I ′ := {U ′ ∪ Y | U ′ ⊆ U, Y ∈ I, |U ′ ∪ Y | ≤ k}.(19)

Show that (U ∪X, I ′) is again a matroid.

5.20. Let M = (X, I) be a matroid and let x ∈ X.

(i) Show that if x is not a loop, then a subset Y of X \{x} is independent in the contracted
matroid M/{x} if and only if Y ∪ {x} is independent in M .

(ii) Show that if x is a loop, then M/{x} = M \ {x}.
(iii) Show that for each Y ⊆ X : rM/{x}(Y ) = rM (Y ∪ {x}) − rM ({x}).

5.21. Let M = (X, I) be a matroid and let Y ⊆ X.

(ii) Let B be a basis of Y . Show that a subset U of X \ Y is independent in the contracted
matroid M/Y , if and only if U ∪B is independent in M .

(ii) Show that for each U ⊆ X \ Y

rM/Y (U) = rM (U ∪ Y ) − rM (Y ).(20)

5.22. Let M = (X, I) be a matroid and let Y, Z ⊆ X. Show that (M \ Y )/Z = (M/Z) \ Y . (That
is, deletion and contraction commute.)

5.23. Let M = (X, I) be a matroid, and suppose that we can test in polynomial time if any subset
Y of X belongs to I. Show that then the same holds for the dual matroid M ∗.



30 Chapter 5. Matroids

5.4. Two technical lemmas

In this section we prove two technical lemmas as a preparation to the coming sections
on matroid intersection.

Let M = (X, I) be a matroid. For any Y ∈ I define a bipartite graph H(M,Y ) as
follows. The graph H(M,Y ) has vertex set X, with colour classes Y and X \ Y . Elements
y ∈ Y and x ∈ X \ Y are adjacent if and only if

(Y \ {y}) ∪ {x} ∈ I.(21)

Then we have:

Lemma 5.1. Let M = (X, I) be a matroid and let Y,Z ∈ I with |Y | = |Z|. Then H(M,Y )
contains a perfect matching on Y4Z.3

Proof. Suppose not. By König’s matching theorem there exist a subset S of Y \ Z and a
subset S′ of Z \Y such that for each edge {y, z} of H(M,Y ) satisfying z ∈ S ′ one has y ∈ S
and such that |S| < |S ′|.

As |(Y ∩ Z) ∪ S| < |(Y ∩ Z) ∪ S′|, there exists an element z ∈ S ′ such that T := (Y ∩
Z)∪S∪{z} belongs to I. This implies that there exists an U ∈ I such that T ⊆ U ⊆ T ∪Y
and |U | = |Y |. So U = (Y \ {x}) ∪ {z} for some x 6∈ S. As {x, z} is an edge of H(M,Y )
this contradicts the choice of S and S ′.

The following forms a counterpart:

Lemma 5.2. Let M = (X, I) be a matroid and let Y ∈ I. Let Z ⊆ X be such that
|Y | = |Z| and such that H(M,Y ) contains a unique perfect matching N on Y4Z. Then Z
belongs to I.

Proof. By induction on k := |Z \ Y |, the case k = 0 being trivial. Let k ≥ 1.

By the unicity of N there exists an edge {y, z} ∈ N , with y ∈ Y \Z and z ∈ Z \Y , with
the property that there is no z′ ∈ Z \Y such that z′ 6= z and {y, z′} is an edge of H(M,Y ).

Let Z ′ := (Z \ {z}) ∪ {y} and N ′ := N \ {{y, z}}. Then N ′ is the unique matching in
H(M,Y ) with union Y4Z ′. Hence by induction, Z ′ belongs to I.

There exists an S ∈ I such that Z ′ \ {y} ⊆ S ⊆ (Y \ {y}) ∪ Z and |S| = |Y | (since
(Y \ {y}) ∪ Z = (Y \ {y}) ∪ {z} ∪ Z ′ and since (Y \ {y}) ∪ {z} belongs to I). Assuming
Z 6∈ I, we know z 6∈ S and hence r((Y ∪Z ′) \ {y}) = |Y |. Hence there exists an z′ ∈ Z ′ \ Y
such that (Y \ {y}) ∪ {z′} belongs to I. This contradicts the choice of y.

Exercises

5.24. Let M = (X, I) be a matroid, let B be a basis of M , and let w : X −→ R be a weight
function. Show that B is a basis of maximum weight, if and only if w(B ′) ≤ w(B) for every
basis B′ with |B′ \B| = 1.

3A perfect matching on a vertex set U is a matching M with
⋃

M = U .
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5.25. Let M = (X, I) be a matroid and let Y and Z be independent sets with |Y | = |Z|. For any
y ∈ Y \ Z define δ(y) as the set of those z ∈ Z \ Y which are adjacent to y in the graph
H(M,Y ).

(i) Show that for each y ∈ Y \ Z the set (Z \ δ(y)) ∪ {y} belongs to I.

(Hint: Apply inequality (8)(iii) to X ′ := (Z\δ(y))∪{y} and X ′′ := (Z\δ(y))∪(Y \{y}).)
(ii) Derive from (i) that for each y ∈ Y \ Z there exists an z ∈ Z \ Y so that {y, z} is an

edge both of H(M,Y ) and of H(M,Z).

5.5. Matroid intersection

Edmonds [1970] discovered that the concept of matroid has even more algorithmic power,
by showing that there exist fast algorithms also for intersections of matroids.

Let M1 = (X, I1) and M2 = (X, I2) be two matroids, on the same set X. Consider
the collection I1 ∩ I2 of common independent sets. The pair (X, I1 ∩ I2) is generally not a
matroid again (cf. Exercise 5.26).

What Edmonds showed is that, for any weight function w on X, a maximum-weight
common independent set can be found in polynomial time. In particular, a common inde-
pendent set of maximum cardinality can be found in polynomial time.

We consider first some applications.

Example 5.5a. Let G = (V,E) be a bipartite graph, with colour classes V1 and V2, say.
Let I1 be the collection of all subsets F of E so that no two edges in F have a vertex in V1

in common. Similarly, let I2 be the collection of all subsets F of E so that no two edges in
F have a vertex in V2 in common. So both (X, I1) and (X, I2) are partition matroids.

Now I1 ∩ I2 is the collection of matchings in G. Finding a maximum-weight common
independent set amounts to finding a maximum-weight matching in G.

Example 5.5b. Let X1, . . . ,Xm and Y1, . . . , Ym be subsets of X. Let M1 = (X, I1) and
M2 = (X, I2) be the corresponding transversal matroids.

Then common independent sets correspond to common partial transversals. The collec-
tions (X1, . . . ,Xm) and (Y1, . . . , Ym) have a common transversal, if and only if the maximum
cardinality of a common independent set is equal to m.

Example 5.5c. Let D = (V,A) be a directed graph. Let M1 = (A, I1) be the cycle matroid
of the underlying undirected graph. Let I2 be the collection of subsets Y of A so that each
vertex of D is entered by at most one arc in Y . So M2 := (A, I2) is a partition matroid.

Now the common independent sets are those subsets Y of A with the property that each
component of (V, Y ) is a rooted tree. Moreover, D has a rooted spanning tree, if and only
if the maximum cardinality of a set in I1 ∩ I2 is equal to |V | − 1.

Example 5.5d. Let G = (V,E) be a connected undirected graph. Then G has two edge-
disjoint spanning trees, if and only if the maximum cardinality of a common independent
set in the cycle matroid M(G) of G and the cocycle matroid M ∗(G) of G is equal to |V |−1.

In this section we describe an algorithm for finding a maximum-cardinality common
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independent sets in two given matroids. In the next section we consider the more general
maximum-weight problem.

For any two matroids M1 = (X, I1) and M2 = (X, I2) and any Y ∈ I1 ∩I2, we define a
directed graph H(M1,M2, Y ) as follows. Its vertex set is X, while for any y ∈ Y, x ∈ X \Y ,

(y, x) is an arc of H(M1,M2, Y ) if and only if (Y \ {y}) ∪ {x} ∈ I1,
(x, y) is an arc of H(M1,M2, Y ) if and only if (Y \ {y}) ∪ {x} ∈ I2.

(22)

These are all arcs of H(M1,M2, Y ). In fact, this graph can be considered as the union of
directed versions of the graphs H(M1, Y ) and H(M2, Y ) defined in Section 5.4.

The following is the basis for finding a maximum-cardinality common independent set
in two matroids.

Cardinality common independent set augmenting algorithm

input: matroids M1 = (X, I1) and M2 = (X, I2) and a set Y ∈ I1 ∩ I2;
output: a set Y ′ ∈ I1 ∩ I2 with |Y ′| > |Y |, if it exists.
description of the algorithm: We assume that M1 and M2 are given in such a way that
for any subset Z of X we can check in polynomial time if Z ∈ I1 and if Z ∈ I2.

Consider the sets

X1 := {y ∈ X \ Y | Y ∪ {y} ∈ I1},
X2 := {y ∈ X \ Y | Y ∪ {y} ∈ I2}.

(23)

Moreover, consider the directed graph H(M1,M2, Y ) defined above. There are two cases.

Case 1. There exists a directed path P in H(M1,M2, Y ) from some vertex in X1 to some
vertex in X2. (Possibly of length 0 if X1 ∩X2 6= ∅.)

We take a shortest such path P (that is, with a minimum number of arcs). Let P
traverse the vertices y0, z1, y1, . . . , zm, ym of H(M1,M2, Y ), in this order. By construction
of the graph H(M1,M2, Y ) and the sets X1 and X2, this implies that y0, . . . , ym belong to
X \ Y and z1, . . . , zm belong to Y .

Now output

Y ′ := (Y \ {z1, . . . , zm}) ∪ {y0, . . . , ym}.(24)

Case 2. There is no directed path in H(M1,M2, Y ) from any vertex in X1 to any vertex
vertex in X2. Then Y is a maximum-cardinality common independent set.

This finishes the description of the algorithm. The correctness of the algorithm is given
in the following two theorems.

Theorem 5.6. If Case 1 applies, then Y ′ ∈ I1 ∩ I2.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that Y ′ belongs to I1.
To see that Y ′ \ {y0} belongs to I1, consider the graph H(M1, Y ) defined in Section

5.4. Observe that the edges {zj , yj} form the only matching in H(M1, Y ) with union
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equal to {z1, . . . , zm, y1, . . . , ym} (otherwise P would have a shortcut). So by Lemma 5.2,
Y ′ \ {y0} = (Y \ {z1, . . . , zm}) ∪ {y1, . . . , ym} belongs to I1.

To show that Y ′ belongs to I1, observe that rM1(Y ∪ Y ′) ≥ rM1(Y ∪ {y0}) = |Y | + 1,
and that, as (Y ′ \ {y0}) ∩X1 = ∅, rM1(Y ∪ Y ′ ∪ {y0}) = |Y |. As Y ′ \ {y0} ∈ I1, we know
Y ′ ∈ I1.

Theorem 5.7. If Case 2 applies, then Y is a maximum-cardinality common independent
set.

Proof. As Case 2 applies, there is no directed X1 − X2 path in H(M1,M2, Y ). Hence
there is a subset U of X containing X1 such that U ∩ X2 = ∅ and such that no arc of
H(M1,M2, Y ) leaves U . We show

rM1(U) + rM2(X \ U) = |Y |.(25)

To this end, we first show

rM1(U) = |Y ∩ U |.(26)

Clearly, as Y ∩ U ∈ I1, we know rM1(U) ≥ |Y ∩ U |. Suppose rM1(U) > |Y ∩ U |. Then
there exists an x in U \ Y so that (Y ∩U)∪ {x} ∈ I1. Since Y ∈ I1, this implies that there
exists a set Z ∈ I1 with |Z| ≥ |Y | and (Y ∩ U) ∪ {x} ⊆ Z ⊆ Y ∪ {x}. Then Z = Y ∪ {x}
or Z = (Y \ {y}) ∪ {x} for some y ∈ Y \ U .

In the first alternative, x ∈ X1, contradicting the fact that x belongs to U . In the second
alternative, (y, x) is an arc of H(M1,M2, Y ) entering U . This contradicts the definition of
U (as y 6∈ U and x ∈ U).

This shows (26). Similarly we have that rM2(X \ U) = |Y \ U |. Hence we have (25).

Now (25) implies that for any set Z in I1 ∩ I2 one has

|Z| = |Z ∩ U | + |Z \ U | ≤ rM1(U) + rM2(X \ U) = |Y |.(27)

So Y is a common independent set of maximum cardinality.

The algorithm clearly has polynomially bounded running time, since we can construct
the auxiliary directed graph H(M1,M2, Y ) and find the path P (if it exists), in polynomial
time.

It implies the result of Edmonds [1970]:

Theorem 5.8. A maximum-cardinality common independent set in two matroids can be
found in polynomial time.

Proof. Directly from the above, as we can find a maximum-cardinality common independent
set after applying at most |X| times the common independent set augmenting algorithm.

The algorithm also yields a min-max relation for the maximum cardinality of a common
independent set, as was shown again by Edmonds [1970].
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Theorem 5.9 (Edmonds’ matroid intersection theorem). Let M1 = (X, I1) and M2 =
(X, I2) be matroids. Then

max
Y ∈I1∩I2

|Y | = min
U⊆X

(rM1(U) + rM2(X \ U)).(28)

Proof. The inequality ≤ follows similarly as in (27). The reverse inequality follows from
the fact that if the algorithm stops with set Y , we obtain a set U for which (25) holds.
Therefore, the maximum in (28) is at least as large as the minimum.

Exercises

5.26. Give an example of two matroids M1 = (X, I1) and M2 = (X, I2) so that (X, I1 ∩ I2) is not
a matroid.

5.27. Derive König’s matching theorem from Edmonds’ matroid intersection theorem.

5.28. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be subsets of the finite set X. Derive from Edmonds’
matroid intersection theorem: (X1, . . . , Xm) and (Y1, . . . , Ym) have a common transversal, if
and only if

|(
⋃

i∈I

Xi) ∩ (
⋃

j∈J

Yj)| ≥ |I| + |J | −m(29)

for all subsets I and J of {1, . . . ,m}.
5.29. Reduce the problem of finding a Hamiltonian cycle in a directed graph to the problem of

finding a maximum-cardinality common independent set in three matroids.

5.30. Let G = (V,E) be a graph and let the edges of G be coloured with |V | − 1 colours. That
is, we have partitioned E into classes X1, . . . , X|V |−1, called colours. Show that there exists
a spanning tree with all edges coloured differently, if and only if (V,E ′) has at most |V | − t
components, for any union E ′ of t colours, for any t ≥ 0.

5.31. Let M = (X, I) be a matroid and let X1, . . . , Xm be subsets of X. Then (X1, . . . , Xm) has an
independent transversal, if and only if the rank of the union of any t sets among X1, . . . , Xm

is at least t, for any t ≥ 0. (Rado [1942].)

5.32. Let M1 = (X, I1) and M2 = (X, I2) be matroids. Define

I1 ∨ I2 := {Y1 ∪ Y2 | Y1 ∈ I1, Y2 ∈ I2}.(30)

(i) Show that the maximum cardinality of a set in I1 ∨ I2 is equal to

min
U⊆X

(rM1
(U) + rM2

(U) + |X \ U |).(31)

(Hint: Apply the matroid intersection theorem to M1 and M∗
2 .)

(ii) Derive that for each Y ⊆ X:

max{|Z| | Z ⊆ Y, Z ∈ I1 ∨ I2} =(32)

min
U⊆Y

(rM1
(U) + rM2

(U) + |Y \ U |).

(iii) Derive that (X, I1 ∨ I2) is again a matroid.

(Hint: Use Exercise 5.3.)

This matroid is called the union of M1 and M2, denoted by M1 ∨M2. (Edmonds and
Fulkerson [1965], Nash-Williams [1967].)
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(iv) Let M1 = (X, I1), . . . ,Mk = (X, Ik) be matroids and let

I1 ∨ . . . ∨ Ik := {Y1 ∪ . . . ∪ Yk | Y1 ∈ I1, . . . , Yk ∈ Ik}.(33)

Derive from (iii) that M1 ∨ . . . ∨Mk := (X, I1 ∨ . . . ∨ Ik) is again a matroid and give a
formula for its rank function.

5.33. (i) Let M = (X, I) be a matroid and let k ≥ 0. Show that X can be covered by k
independent sets, if and only if |U | ≤ k · rM (U) for each subset U of X.

(Hint: Use Exercise 5.32.) (Edmonds [1965].)

(ii) Show that the problem of finding a minimum number of independent sets covering X in
a given matroid M = (X, I), is solvable in polynomial time.

5.34. Let G = (V,E) be a graph and let k ≥ 0. Show that E can be partitioned into k forests, if
and only if each nonempty subset W of V contains at most k(|W | − 1) edges of G.

(Hint: Use Exercise 5.33.) (Nash-Williams [1964].)

5.35. Let X1, . . . , Xm be subsets of X and let k ≥ 0.

(i) Show that X can be partitioned into k partial transversals of (X1, . . . , Xm), if and only
if

k(m− |I|) ≥ |X \
⋃

i∈I

Xi|(34)

for each subset I of {1, . . . ,m}.
(ii) Derive from (i) that {1, . . . ,m} can be partitioned into classes I1, . . . , Ik so that (Xi | i ∈

Ij) has a transversal, for each j = 1, . . . , k, if and only if Y contains at most k|Y | of the
Xi as a subset, for each Y ⊆ X.

(Hint: Interchange the roles of {1, . . . ,m} and X.) (Edmonds and Fulkerson [1965].)

5.36. (i) Let M = (X, I) be a matroid and let k ≥ 0. Show that there exist k pairwise disjoint
bases of M , if and only if k(rM (X) − rM (U)) ≥ |X \ U | for each subset U of X.

(Hint: Use Exercise 5.32.) (Edmonds [1965].)

(ii) Show that the problem of finding a maximum number of pairwise disjoint bases in a
given matroid, is solvable in polynomial time.

5.37. Let G = (V,E) be a connected graph and let k ≥ 0. Show that there exist k pairwise edge-
disjoint spanning trees, if and only if for each t, for each partition (V1, . . . , Vt) of V into t
classes, there are at least k(t− 1) edges connecting different classes of this partition.

(Hint: Use Exercise 5.36.) (Nash-Williams [1961], Tutte [1961].)

5.38. Let M1 and M2 be matroids so that, for i = 1, 2, we can test in polynomial time if a given set
is independent in Mi. Show that the same holds for the union M1 ∨M2.

5.39. Let M = (X, I) be a matroid and let B and B′ be two disjoint bases. Let B be partitioned
into sets Y1 and Y2. Show that there exists a partition of B′ into sets Z1 and Z2 so that both
Y1 ∪ Z1 ∪ Z2 and Z1 ∪ Y2 are bases of M .

(Hint: Assume without loss of generality that X = B ∪ B′. Apply the matroid intersection
theorem to the matroids (M \ Y1)/Y2 and (M∗ \ Y1)/Y2.)

5.40. The following is a special case of a theorem of Nash-Williams [1985]:

Let G = (V,E) be a simple, connected graph and let b : V −→ Z+. Call a graph G̃ = (Ṽ , Ẽ)
a b-detachment of G if there is a function φ : Ṽ −→ V such that |φ−1(v)| = b(v) for each



36 Chapter 5. Matroids

v ∈ V , and such that there is a one-to-one function ψ : Ẽ −→ E with ψ(e) = {φ(v), φ(w)} for
each edge e = {v, w} of G̃.

Then there exists a connected b-detachment, if and only if for each U ⊆ V the number of
components of the graph induced by V \ U is at most b(U) − |EU | + 1.

Here EU denotes the set of edges intersecting U .

5.6. Weighted matroid intersection

We next consider the problem of finding a maximum-weight common independent set,
in two given matroids, with a given weight function. The algorithm, again due to Edmonds
[1970], is an extension of the algorithm given in Section 5.5. In each iteration, instead of
finding a path P with a minimum number of arcs in H, we will now require P to have
minimum length with respect to some length function defined on H.

To describe the algorithm, if matroid M1 = (X, I1) and M2 = (X, I2) and a weight
function w : X −→ Q are given, call a set Y ∈ I1 ∩ I2 a max-weight common independent
set if w(Y ′) ≤ w(Y ) for each Y ′ ∈ I1 ∩ I2 with |Y ′| = |Y |.

Weighted common independent set augmenting algorithm

input: matroids M1 = (X, I1) and M2 = (X, I2), a weight function w :X−→ Q, and a
max-weight common independent set Y ;
output: a max-weight common independent set Y ′ with |Y ′| = |Y | + 1.
description of the algorithm: Consider again the sets X1 and X2 and the directed graph
H(M1,M2, Y ) on X as in the cardinality case.

For any x ∈ X define the ‘length’ l(x) of x by:

l(x) := w(x) if x ∈ Y ,
l(x) := −w(x) if x 6∈ Y.

(35)

The length of a path P , denoted by l(P ), is equal to the sum of the lengths of the vertices
traversed by P , counting multiplicities.

We consider two cases.

Case 1. There exists a directed path P in H(M1,M2, Y ) from X1 to X2. We choose P so
that l(P ) is minimal and so that it has a minimum number of arcs among all minimum-
length X1 −X2 paths.

Let P traverse y0, z1, y1, . . . , ym, zm, in this order. Set

Y ′ := (Y \ {z1, . . . , zm}) ∪ {y0, , . . . , ym},(36)

and repeat.

Case 2. There is no directed X1 − X2 path in H(M1,M2, Y ). Then Y is a maximum-
cardinality common independent set.

This finishes the description of the algorithm. The correctness of the algorithm if Case
2 applies follows directly from Theorem 5.7. In order to show the correctness if Case 1
applies, we first prove the following.
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We first show a basic property of the length function l. Let y ∈ Y and x ∈ X \ Y and
let P be an y − x path in H(M1,M2, Y ). Let P traverse y = z1, y1, z2, y2, . . . , zm, ym = x,
in this order. (So the zi belong to Y and the yi belong to X \ Y .)

Proposition 1. One of the following holds:

(i) there exists an y − x path P ′ with l(P ′) ≤ l(P ) and traversing fewer
vertices than P ,

or (ii) there exists a directed circuit C with l(C) < 0 and traversing fewer
vertices than P ,

or (iii) (Yk \ {z1, . . . , zm}) ∪ {y1, . . . , ym} ∈ I1.

(37)

Proof. Suppose (37)(iii) does not hold. Then by Lemma 5.2

{z1, y1}, . . . , {zm, ym}(38)

is not the only matching inH(M1, Yk) with union {z1, . . . , zm, y1, . . . , ym}. That is, there ex-
ists a proper permutation (j1, . . . , jm) of (1, . . . ,m) so that (zi, yji

) is an arc ofH(M1,M2, Yk)
for each i = 1, . . . ,m.

Now consider the arcs

(z1, y1), . . . , (zm, ym), (z1, yj1), . . . , (zm, yjm
),

(y1, z2), . . . , (ym−1, zm), (y1, z2), . . . , (ym−1, zm),
(39)

counting multiplicities. Now each of y1, z2, y2, . . . , ym−1, zm is entered and left by exactly
two arcs in (39), while z1 is left by exactly two arcs in (39) and ym is entered by exactly two
arcs in (39). Moreover, since (j1, . . . , jm) 6= (1, . . . ,m), the arcs in (39) contain a directed
circuit. Hence the arcs in (39) can be decomposed into two simple directed z1 − ym paths
P ′ and P ′′ and a number of simple directed circuits C1, . . . , Ct with t ≥ 1. We have

l(P ′) + l(P ′′) + l(C1) + · · · + l(Ct) = 2 · l(P ).(40)

Now if l(Cj) < 0 for some j we have (37)(ii). So we may assume that l(Cj) ≥ 0 for each
j = 1, . . . , t. Hence l(P ′) + l(P ′′) ≤ 2 · l(P ). If both P ′ and P ′′ traverse fewer vertices than
P , one of them will satisfy (37)(i). If one of them, P ′ say, traverses the same vertices as P ,
then l(P ′′) ≤ 2 · l(P )− l(P ′) = l(P ), and hence P ′′ satisfies (37)(i). (Note that P ′′ traverses
fewer vertices than P , since t ≥ 1.)

This implies:

Theorem 5.10. If Y is a max-weight common independent set, then H(M1,M2, Y ) has
no directed circuit of negative length.

Proof. Suppose H(M1,M2, Y ) has a cycle C of negative length. Let C traverse z1, y1 , . . . ,
zm,ym, in this order, with the zi in Y and the yi in X \ Y . Choose C so that m is minimal.

Now consider Z := (Y \{z1, . . . , zm})∪{y1, . . . , ym}. Since w(Z) = w(Y )−l(C) > w(Y ),
while |Z| = |Y |, we know that Z 6∈ I1∩I2. Without loss of generality, Z 6∈ I1. So (37)(i) or
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(ii) applies. This would give a directed circuit of negative length, traversing fewer vertices
than C. This contradicts the minimality of m.

This implies that if Case 1 in the algorithm applies, the set Y ′ belongs to I1 ∩ I2: this
follows from the fact that P is a path without shortcuts (since each directed circuit has
nonnegative length, by Theorem 5.10; hence Theorem 5.6 implies that Y ′ ∈ I1 ∩ I2.

This gives:

Theorem 5.11. If Case 1 applies, Y ′ is a max-weight common independent set.

Suppose Z ∈ I1 ∩ I2 with |Z| = k + 1 and w(Z) > w(Y ′).

Since |Z| > |Y |, there exist y, z ∈ Z \ Y so that Y ∪ {y} ∈ I1 and Y ∪ {z} ∈ I2. So
y ∈ X1 and z ∈ X2.

Now by Lemma 5.1, there exist pairwise disjoint arcs in H(M1,M2, Y ) so that the tails
are the elements in Y \Z and the heads are the elements in Z \ (Y ∪ {y}). Similarly, there
exist pairwise disjoint arcs in H(M1,M2, Y ) so that the tails are the elements in Z\(Y ∪{z})
and the heads are the elements in Y \ Z.

These two sets of arcs together form a disjoint union of one y− z path Q and a number
of directed circuits C1, . . . , Ct. Now each Cj has nonnegative length, by Theorem 5.10. This
implies

l(Q) ≤ l(Q) +
t∑

j=1

l(Cj) = w(Y ) − w(Z) < w(Y ) − w(Y ′) = l(P ).(41)

This contradicts the fact that P is a minimum-length X1 −X2 path.

So the weighted common independent set augmenting algorithm is correct. It obviously
has polynomially bounded running time. Thus we obtain the result of Edmonds [1970]:

Theorem 5.12. A maximum-weight common independent set in two matroids can be found
in polynomial time.

Proof. Starting with the max-weight common independent set Y0 := ∅ we can find itera-
tively max-weight common independent sets Y0, Y1, . . . , Yk, where |Yi| = i for i = 0, . . . , k
and where Yk is a maximum-cardinality common independent set. Taking one among
Y0, . . . , Yk of maximum weight, we have a maximum-weight common independent set.

Exercises

5.41. Give an example of two matroids M1 = (X, I1) and M2 = (X, I2) and a weight function
w : X −→ Z+ so that there is no maximum-weight common independent set which is also a
maximum-cardinality common independent set.

5.42. Reduce the problem of finding a maximum-weight common basis in two matroids to the
problem of finding a maximum-weight common independent set.
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5.43. Let D = (V,A) be a directed graph, let r ∈ V , and let l : A −→ Z+ be a length function.
Reduce the problem of finding a minimum-length rooted tree with root r, to the problem of
finding a maximum-weight common independent set in two matroids.

5.44. Let B be a common basis of the matroids M1 = (X, I1) and M2 = (X, I2) and let w : X −→ Z
be a weight function. Define length function l : X −→ Z by l(x) := w(x) if x ∈ B and
l(x) := −w(x) if x 6∈ B.

Show that B has maximum-weight among all common bases of M1 and M2, if and only if
H(M1,M2, B) has no directed circuit of negative length.

5.7. Matroids and polyhedra

The algorithmic results obtained in the previous sections have interesting consequences
for polyhedra associated with matroids.

Let M = (X, I) be a matroid. The matroid polytope P (M) of M is, by definition, the
convex hull of the incidence vectors of the independent sets of M . So P (M) is a polytope
in RX .

Each vector z in P (M) satisfies the following linear inequalities:

z(x) ≥ 0 for x ∈ X,
z(Y ) ≤ rM (Y ) for Y ⊆ X.

(42)

This follows from the fact that the incidence vector χY of any independent set Y of M
satisfies (42).

Note that if z is an integer vector satisfying (42), then z is the incidence vector of some
independent set of M .

Edmonds [1970] showed that system (42) in fact fully determines the matroid polytope
P (M). It means that for each weight function w : X −→ R, the linear programming
problem

maximize wT z,
subject to z(x) ≥ 0 (x ∈ X)

z(Y ) ≤ rM (Y ) (Y ⊆ X)

(43)

has an integer optimum solution z. This optimum solution necessarily is the incidence vector
of some independent set of M . In order to prove this, we also consider the LP-problem dual
to (43):

minimize
∑

Y ⊆X

yY rM (Y ),

subject to yY ≥ 0 (Y ⊆ X)∑

Y ⊆X,x∈Y

yY ≥ w(x) (x ∈ X).

(44)

We show:

Theorem 5.13. If w is integer, then (43) and (44) have integer optimum solutions.
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Proof. Order the elements ofX as y1, . . . , ym in such a way that w(y1) ≥ w(y2) ≥ . . . w(ym).
Let n be the largest index for which w(yn) ≥ 0. Define Xi := {y1, . . . , yi} for i = 0, . . . ,m
and

Y := {yi | i ≤ n; rM (Xi) > rM (Xi−1)}.(45)

Then Y belongs to I (cf. Exercise 5.7). So z := χY is an integer feasible solution of (43).
Moreover, define a vector y in RP(X) by:

yY := w(yi) − w(yi+1) if Y = Xi for some i = 1, . . . , n− 1,
yY := w(yn) if Y = Xn,
yY := 0 for all other Y ⊆ X

(46)

Then y is an integer feasible solution of (44).
We show that z and y have the same objective value, thus proving the theorem:

wT z = w(Y ) =
∑

x∈Y

w(x) =
n∑

i=1

w(yi) · (rM (Xi) − rM (Xi−1))(47)

= w(yn) · rM (Xn) +
n∑

i=1

(w(yi) − w(yi+1)) · rM (Xi) =
∑

Y ⊆X

yY rM (Y ).

So system (42) is totally dual integral. This directly implies:

Corollary 5.13a. The matroid polytope P (M) is determined by (42).

Proof. Immediately from Theorem 5.13.

An even stronger phenomenon occurs at intersections of matroid polytopes. It turns out
that the intersection of two matroid polytopes gives exactly the convex hull of the common
independent sets, as was shown again by Edmonds [1970].

To see this, we first derive a basic property:

Theorem 5.14. Let M1 = (X, I1) and M2 = (X, I2) be matroids, let w : X −→ Z be a
weight function and let B be a common basis of maximum weight w(B). Then there exist
functions w1, w2 : X −→ Z so that w = w1 + w2, and so that B is both a maximum-weight
basis of M1 with respect to w1 and a maximum-weight basis of M2 with respect to w2.

Proof. Consider the directed graph H(M1,M2, B) with length function l as defined in
Exercise 5.44. Since B is a maximum-weight basis, H(M1,M2, B) has no directed circuits
of negative length. Hence there exists a function φ : X −→ Z so that φ(y)−φ(x) ≤ l(y) for
each arc (x, y) of H(M1,M2, B). Using the definition of H(M1,M2, B) and l, this implies
that for y ∈ B, x ∈ X \B:

φ(x) − φ(y) ≤ −w(x) if (B \ {y}) ∪ {x} ∈ I1,
φ(y) − φ(x) ≤ w(x) if (B \ {y}) ∪ {x} ∈ I2.

(48)



Section 5.7. Matroids and polyhedra 41

Now define

w1(y) := φ(y), w2(y) := w(y) − φ(y) for y ∈ B
w1(x) := w(x) + φ(x), w2(x) := −φ(x) for x ∈ X \B.

(49)

Then w1(x) ≤ w1(y) whenever (B \ {y})∪{x} ∈ I1. So by Exercise 5.24, B is a maximum-
weight basis of M1 with respect to w1. Similarly, B is a maximum-weight basis of M2 with
respect to w2.

Note that if B is a maximum-weight basis of M1 with respect to some weight function
w, then also after adding a constant function to w this remains the case.

This observation will be used in showing that a theorem similar to Theorem 5.14 holds
for independent sets instead of bases.

Theorem 5.15. Let M1 = (X, I1) and M2 = (X, I2) be matroids, let w : X −→ Z be a
weight function, and let Y be a maximum-weight common independent set. Then there exist
weight functions w1, w2 : X −→ Z so that w = w1 + w2 and so that Y is both a maximum-
weight independent set of M1 with respect to w1 and a maximum-weight independent set of
M2 with respect to w2.

Proof. Let U be a set of cardinality |X| + 2 disjoint from X. Define

J1 := {Y ∪W | Y ∈ I1,W ⊆ U, |Y ∪W | ≤ |X| + 1},
J2 := {Y ∪W | Y ∈ I2,W ⊆ U, |Y ∪W | ≤ |X| + 1}.

(50)

Then M ′
1 := (X ∪U,J1) and M2 := (X ∪U,J2) are matroids again. Define w̃ : X −→ Z by

w̃(x) := w(x) if x ∈ X,
w̃(x) := 0 if x ∈ U .

(51)

Let W be a subset of U of cardinality |X \ Y | + 1. Then Y ∪W is a common basis of
M ′

1 and M ′
2. In fact, Y ∪W is a maximum-weight common basis with respect to the weight

function w̃. (Any basis B of larger weight would intersect X in a common independent set
of M1 and M2 of larger weight than Y .)

So by Theorem 5.14, there exist functions w̃1, w̃2 : X −→ Z so that w̃1 + w̃2 = w̃ and
so that Y ∪W is both a maximum-weight basis of M ′

1 with respect to w̃1 and a maximum-
weight basis of M ′

2 with respect to w̃2.
Now, w̃1(u

′′) ≤ w̃1(u
′) whenever u′ ∈ W,u′′ ∈ U \ W . Otherwise we can replace u′

in Y ∪W by u′′ to obtain a basis of M ′
1 of larger w̃1-weight. Similarly, w̃2(u

′′) ≤ w̃2(u
′)

whenever u′ ∈W,u′′ ∈ U \W .
Since w̃1(u) + w̃2(u) = w̃(u) = 0 for all u ∈ U , this implies that w̃1(u

′′) = w̃1(u
′)

whenever u′ ∈ W,u′′ ∈ U \W . As ∅ 6= W 6= U , it follows that w̃1 and w̃2 are constant on
U . Since we can add a constant function to w̃1 and subtracting the same function from w̃2

without spoiling the required properties, we may assume that w̃1 and w̃2 are 0 on U .
Now define w1(x) := w̃1(x) and w2(x) := w̃2(x) for each x ∈ X. Then Y is both a

maximum-weight independent set of M1 with respect to w1 and a maximum-weight inde-
pendent set of M2 with respect to w2.
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Having this theorem, it is quite easy to derive that the intersection of two matroid
polytopes has integer vertices, being incidence vectors of common independent sets.

By Theorem 5.13 the intersection P (M1) ∩ P (M2) of the matroid polytopes associated
with the matroids M1 = (X, I1) and M2 = (X, I2) is determined by:

z(x) ≥ 0 (x ∈ X),
z(Y ) ≤ rM1(Y ) (Y ⊆ X),
z(Y ) ≤ rM2(Y ) (Y ⊆ X),

(52)

The corresponding linear programming problem is, for any w : X −→ R:

maximize wT z,
subject to z(x) ≥ 0 (x ∈ X),

z(Y ) ≤ rM1(Y ) (Y ⊆ X),
z(Y ) ≤ rM2(Y ) (Y ⊆ X).

(53)

Again we consider the dual linear programming problem:

minimize
∑

Y ⊆X

(y′Y rM1(Y ) + y′′Y rM2(Y ))

subject to y′Y ≥ 0 (Y ⊆ X),
y′′Y ≥ 0 (Y ⊆ X),∑

Y ⊆X,x∈Y

(y′Y + y′′Y ) ≥ w(x) (x ∈ X).

(54)

Now

Theorem 5.16. If w is integer, then (53) and (54) have integer optimum solutions.

Proof. Let Y be a common independent set of maximum weight w(Y ). By Theorem 5.14,
there exist functions w1, w2 : X −→ Z so that w1 + w2 = w and so that Y is a maximum-
weight independent set in Mi with respect to wi (i = 1, 2).

Applying Theorem 5.13 to w1 and w2, respectively, we know that there exist integer opti-
mum solutions y′ and y′′, respectively, for problem (44) with respect to M1, w1 and M2, w2,
respectively. One easily checks that y′, y′′ forms a feasible solution of (54). Optimality
follows from:

w(Z) = w1(Z) + w2(Z) =
∑

Y ⊆X

y′Y rM1(Y ) +
∑

Y ⊆X

y′′Y rM2(Y )

=
∑

Y ⊆X

(y′Y rM1(Y ) + y′′Y rM2(Y )).

(55)

So system (52) is totally dual integral. Again, this directly implies:

Corollary 5.16a. The convex hull of the common independent sets of two matroids M1

and M2 is determined by (52).

Proof. Directly from Theorem 5.16.
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Exercises

5.45. Give an example of three matroids M1, M2, and M3 on the same set X so that the intersection
P (M1) ∩ P (M2) ∩ P (M3) is not the convex hull of the common independent sets.

5.46. Derive Edmonds’ matroid intersection theorem (Theorem 5.9) from Theorem 5.16.



44 Chapter 6. Perfect matchings in regular bipartite graphs

6. Perfect matchings in regular bipartite graphs

6.1. Counting perfect matchings in 3-regular bipartite graphs

We first consider the following theorem of Voorhoeve [1979]:

Theorem 6.1. Let G = (V,E) be a 3-regular bipartite graph with 2n vertices. Then G has
at least (4

3)n perfect matchings.

Proof. For any graph G, let φ(G) denote the number of perfect matchings in G.
We now define three functions. Let h(n) be the minimum of φ(G) taken over all 3-regular

bipartite graphs on 2n vertices. Let f(n) be the minimum of φ(G) taken over all bipartite
graphs on 2n vertices where two vertices have degree 2, while all other vertices have degree
3. Let g(n) be the minimum of φ(G) taken over all bipartite graphs on 2n vertices where
one vertex has degree 2, one vertex has degree 4, while all other vertices have degree 3.

So we must show

h(n) ≥ (4
3)n(1)

for each n. We show a number of relations between the three functions h, f , and g that
imply (1).

First we have

h(n) ≥ 3
2f(n)(2)

for each n. Indeed, let G be a 3-regular bipartite graph on 2n vertices with φ(G) = h(n).
Choose a vertex u, and let e1, e2, e3 be the edges incident with u.

Let G− ei be the graph obtained from G by deleting ei. Sop G− ei is a graph with two
vertices of degree 2, while all other vertices have degree 3. So, by definition of f(n),

φ(G− ei) ≥ f(n).(3)

Now each perfect matching M in G is also a perfect matching in two of the graphs G −
e1, . . . , G− e3. Hence we have:

2h(n) = 2φ(G) = φ(G− e1) + φ(G− e2) + φ(G− e3) ≥ 3f(n),(4)

implying (2).
Having (2), it suffices to show:

f(n) ≥ (4
3)n(5)

for each n.
Trivially one has

f(1) = 2.(6)

Next we show that for each n:

g(n) ≥ 4
3f(n).(7)
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Let G be a bipartite graph with 2n vertices, with one vertex of degree 2, one vertex of
degree 4, while all other vertices have degree 3, such that φ(G) = g(n).

Note that the vertices of degree 2 and 4 belong to the same colour class of G.

Let u be the vertex of degree 4, and let e1, . . . , e4 be the four edges incident with u.
Then for each i = 1, . . . , 4, the graph G − ei has two vertices of degree 2, while all other
vertices have degree 3. So φ(G− ei) ≥ f(n) for each i = 1, . . . , 4.

Moreover, each perfect matching M of G is a perfect matching of exactly three of the
graphs G− e1, . . . , G− e4. Hence

3g(n) = 3φ(G) = φ(G− e1) + · · · + φ(G− e4) ≥ 4f(n)(8)

implying (7).

We next show

f(n) ≥ 4
3f(n− 1).(9)

Then (5) follows by induction on n.

To see (9), let G be a bipartite graph on 2n vertices with two vertices, u and w say,
of degree 2, all other vertices having degree 3. Note that u and v necessarily belong to
different colour classes of G.

Let v1 and v2 be the two neighbours of u.

There are a number of cases (the first case being most general).

Case 1: v1 6= v2 6= w 6= v1. So v1 and v2 are distinct vertices of degree 3. Contract the
edges uv1 and uv2. We obtain a graph G′ with one vertex w of degree 2, one vertex (the
new vertex arisen by the contraction) of degree 4, while all other vertices have degree 3.
Moreover, G′ has 2(n − 1) vertices. Each perfect matching in G′ is the image of a perfect
matching in G. So

f(n) = φ(G) ≥ φ(G′) ≥ g(n− 1) ≥ 4
3f(n− 1),(10)

using (7). (In fact one has φ(G) = φ(G′), but that is not needed in the proof.)

Case 2: v1 6= v2 = w. So v1 has degree 3 and v2 has degree 2. Contract the edges uv1 and
uv2. We obtain a 3-regular bipartite graph G′ with 2(n − 1) vertices. Again, each perfect
matching in G′ is the image of a perfect matching in G. So

f(n) = φ(G) ≥ φ(G′) ≥ h(n− 1) ≥ 3
2f(n− 1) ≥ 4

3f(n− 1),(11)

using (2).

Case 3: v1 = v2 6= w. So there are two parallel edges connecting u and v1. Consider the
graph G′ = G − u − v1 (the graph obtained by deleting vertices u and v1 and all edges
incident with them). Then G′ is a bipartite graph with 2(n− 1) vertices, with two vertices
of degree 2, while all other vertices have degree 3. Moreover, each perfect matching M in
G′ can be extended in two ways to a perfect matching in G (since there are two parallel
edges connecting u and v1). So

f(n) = φ(G) ≥ 2φ(G′) ≥ 2f(n− 1) ≥ 4
3f(n− 1).(12)
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Case 3: v1 = v2 = w. So u and v1 form a component of G, with two parallel edges
connecting u and v1. Again, consider the graph G′ = G − u − v1. Then G′ is a 3-regular
bipartite graph with 2(n− 1) vertices. Each perfect matching M in G′ can be extended in
two ways to a perfect matching in G (since there are two parallel edges connecting u and
v1). So

f(n) = φ(G) ≥ 2φ(G′) ≥ 2h(n− 1) ≥ 3f(n− 1) ≥ 4
3f(n− 1),(13)

using (2).

6.2. The factor 4
3 is best possible

Let α be the largest real number with the property that each 3-regular bipartite graph
with 2n vertices has at least αn perfect matchings.

We show

Theorem 6.2. α = 4
3 .

Proof. The fact that α ≥ 4
3 follows directly from Theorem 6.1. To see the reverse inequality,

fix n. Let Π be the set of permutations of {1, . . . , 3n}. For any π ∈ Π, let Gπ be the bipartite
graph with vertices u1, . . . , un, v1, . . . , vn and edges e1, . . . , e3n, where

ei connects ud i
3
e and v

d
π(i)
3

e
(14)

for i = 1, . . . , 3n. (Here dxe denotes the upper integer part of x.) So Gπ is a 3-regular
bipartite graph with 2n vertices. Hence, by definition of α,

φ(Gπ) ≥ αn,(15)

where φ(Gπ) denotes the number of perfect matchings in Gπ.
On the other hand,

∑

π∈Π

φ(Gπ) = 3n3nn!(2n)!.(16)

This can be seen as follows. The left hand side is equal to the number of pairs (π, I), where
π is a permutation of {1 . . . , 3n} and where I is a subset of {1, . . . , 3n} such that {ei|i ∈ I}
forms a perfect matching in Gπ; that is, such that

(i) |I ∩ {3j − 2, 3j − 1, 3j}| = 1 for each j = 1, . . . , n,

(ii) |π(I) ∩ {3j − 2, 3j − 1, 3j}| = 1 for each j = 1, . . . , n.

(17)

Now by first choosing I satisfying (17)(i) (which can be done in 3n ways), and next choosing
a permutation π of {1, . . . , 3n} satisfying (17)(ii) (which can be done in 3nn!(2n)! ways),
we obtain (16).

Since |Π| = (3n)!, (15) and (16) imply

α ≤ (
32nn!(2n)!

(3n)!
)1/n(18)
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yielding (??), with Stirling’s formula, which says that

n! ≈ (
n

e
)n
√

2πn;(19)

in fact,

lim
n→∞

n!1/n

n
=

1

e
.(20)
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7. Minimum circulation of railway stock

7.1. The problem

Nederlandse Spoorwegen (Dutch Railways) runs an hourly train service on its route
Amsterdam-Schiphol Airport-Leyden-The Hague-Rotterdam-Dordrecht-Roosendaal-Middel-
burg-Vlissingen vice versa, with the following timetable, for each day from Monday till
Friday:

ride number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam d 6.48 7.55 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.56 20.56 21.56 22.56
Rotterdam a 7.55 8.58 9.58 10.58 11.58 12.58 13.58 14.58 15.58 16.58 17.58 18.58 19.58 20.58 21.58 22.58 23.58
Rotterdam d 7.00 8.01 9.02 10.03 11.02 12.03 13.02 14.02 15.02 16.00 17.01 18.01 19.02 20.02 21.02 22.02 23.02
Roosendaal a 7.40 8.41 9.41 10.43 11.41 12.41 13.41 14.41 15.41 16.43 17.43 18.42 19.41 20.41 21.41 22.41 23.54
Roosendaal d 7.43 8.43 9.43 10.45 11.43 12.43 13.43 14.43 15.43 16.45 17.45 18.44 19.43 20.43 21.43
Vlissingen a 8.38 9.38 10.38 11.38 12.38 13.38 14.38 15.38 16.38 17.40 18.40 19.39 20.38 21.38 22.38

ride number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen d 5.30 6.54 7.56 8.56 9.56 10.56 11.56 12.56 13.56 14.56 15.56 16.56 17.56 18.56 19.55
Roosendaal a 6.35 7.48 8.50 9.50 10.50 11.50 12.50 13.50 14.50 15.50 16.50 17.50 18.50 19.50 20.49
Roosendaal d 5.29 6.43 7.52 8.53 9.53 10.53 11.53 12.53 13.53 14.53 15.53 16.53 17.53 18.53 19.53 20.52 21.53
Rotterdam a 6.28 7.26 8.32 9.32 10.32 11.32 12.32 13.32 14.32 15.32 16.32 17.33 18.32 19.32 20.32 21.30 22.32
Rotterdam d 5.31 6.29 7.32 8.35 9.34 10.34 11.34 12.34 13.35 14.35 15.34 16.34 17.35 18.34 19.34 20.35 21.32 22.34
Amsterdam a 6.39 7.38 8.38 9.40 10.38 11.38 12.38 13.38 14.38 15.38 16.40 17.38 18.38 19.38 20.38 21.38 22.38 23.38

Table 1. Timetable Amsterdam-Vlissingen vice versa

The trains have more stops, but for our purposes only those given in the table are of
interest.

For each of the stages of any scheduled train, Nederlandse Spoorwegen has determined
an expected number of passengers, divided into first class and second class, given in the
following table:

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam-Rotterdam
47 100 61 41 31 46 42 33 39 84 109 78 44 28 21 28 10
340 616 407 336 282 287 297 292 378 527 616 563 320 184 161 190 123

Rotterdam-Roosendaal
4 35 52 41 26 25 27 27 28 52 113 98 51 29 22 13 8
58 272 396 364 240 221 252 267 287 497 749 594 395 254 165 130 77

Roosendaal-Vlissingen
14 19 27 26 24 32 15 21 23 41 76 67 43 20 15
328 181 270 237 208 188 180 195 290 388 504 381 276 187 136

train number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen-Roosendaal
28 100 48 57 24 19 19 17 19 22 39 30 19 15 11
138 448 449 436 224 177 184 181 165 225 332 309 164 142 121

Roosendaal-Rotterdam
16 88 134 57 71 34 26 22 21 25 35 51 32 20 14 14 7
167 449 628 397 521 281 214 218 174 206 298 422 313 156 155 130 64

Rotterdam-Amsterdam
7 26 106 105 56 75 47 36 32 34 39 67 74 37 23 18 17 11
61 230 586 545 427 512 344 303 283 330 338 518 606 327 169 157 154 143

Table 2. Numbers of required first class (up) and second class (down) seats

The problem to be solved is: What is the minimum amount of train stock necessary to
perform the service in such a way that at each stage there are enough seats?

In order to answer this question, one should know a number of further characteristics
and constraints. In a first variant of the problem considered, the train stock consists of one
type of two-way train-units, each consisting of three carriages. The number of seats in any
unit is:

first class 38

second class 163

Table 3. Number of seats
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Each unit has at both ends an engineer’s cabin, and units can be coupled together, up to
a certain maximum number of units. This maximum is trajectory-dependent, and depends
on lengths of station platforms, curvature of bends, required acceleration speed and braking
distance, etc. On each of the trajectories of the line Amsterdam-Vlissingen this maximum
number is 15 carriages, meaning 5 train-units.

The train length can be changed, by coupling or decoupling units, at the terminal
stations of the line, that is at Amsterdam and Vlissingen, and en route at two intermediate
stations: Rotterdam and Roosendaal. Any train-unit decoupled from a train arriving at
place X at time t can be linked up to any other train departing from X at any time later
than t. (The Amsterdam-Vlissingen schedule is such that in practice this gives enough time
to make the necessary switchings.)

A last condition put is that for each place X ∈ {Amsterdam, Rotterdam, Roosendaal,
Vlissingen}, the number of train-units staying overnight at X should be constant during the
week (but may vary for different places). This requirement is made to facilitate surveying
the stock, and to equalize at any place the load of overnight cleaning and maintenance
throughout the week. It is not required that the same train-unit, after a night in Roosendaal,
say, should return to Roosendaal at the end of the day. Only the number of units is of
importance.

Given these problem data and characteristics, one may ask for the minimum number of
train-units that should be available to perform the daily cycle of train rides required.

It is assumed that if there is sufficient stock for Monday till Friday, then this should also
be enough for the weekend services, since in the weekend a few early trains are cancelled,
and on the remaining trains there is a smaller expected number of passengers. Moreover, it
is not taken into consideration that stock can be exchanged during the day with other lines
of the network. In practice this will happen, but initially this possibility is ignored. (We
will return below to this issue.)

Another point left out of consideration is the regular maintenance and repair of stock
and the amount of reserve stock that should be maintained, as this generally amounts to
just a fixed percentual addition on top of the net minimum.

7.2. A network model

If only one type of railway stock is used, a classical method can be applied to solve the
problem, based on min-cost circulations in networks (see Bartlett [1957], cf. also Boldyreff
[1955], Feeney [1957], Ferguson and Dantzig [1955], Norman and Dowling [1968], van Rees
[1965], White and Bomberault [1969]).

To this end, a directed graph D = (V,A) is constructed as follows. For each place
X ∈ {Amsterdam, Rotterdam, Roosendaal, Vlissingen} and for each time t at which any
train leaves or arrives at X, we make a vertex (X, t). So the vertices of D correspond to all
198 time entries in the timetable (Table 1).

For any stage of any train ride, leaving place X at time t and arriving at place Y at
time t′, we make a directed arc from (X, t) to (Y, t′). For instance, there is an arc from
(Roosendaal, 7.43) to (Vlissingen, 8.38).

Moreover, for any place X and any two successive times t, t′ at which any time leaves
or arrives atX, we make an arc from (X, t) to (X, t′). Thus in our example there will be arcs,
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e.g., from (Rotterdam, 8.01) to (Rotterdam, 8.32), from (Rotterdam, 8.32) to (Rotterdam, 8.35),
from (Vlissingen, 8.38) to (Vlissingen, 8.56), and from (Vlissingen, 8.56) to (Vlissingen, 9.38).
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Figure 7.1 The graph D. All arcs are oriented clockwise

Finally, for each place X there will be an arc from (X, t) to (X, t′), where t is the last
time of the day at which any train leaves or arrives at X and where t′ is the first time of the
day at which any train leaves or arrives at X. So there is an arc from (Roosendaal, 23.54)
to (Roosendaal, 5.29).

We can now describe any possible routing of train stock as a function f : A −→ Z+,
where f(a) denotes the following. If a corresponds to a ride stage, then f(a) is the number
of units deployed for that stage. If a corresponds to an arc from (X, t) to (X, t′), then
f(a) is equal to the number of units present at place X in the time period t–t′ (possibly
overnight).

First of all, this function is a circulation. That is, at any vertex v of D one should have:

∑

a∈δ+(v)

f(a) =
∑

a∈δ−(v)

f(a),(1)

the flow conservation law. Here δ+(v) denotes the set of arcs of D that are entering vertex
v and δ−(v) denotes the set of arcs of D that are leaving v.

Moreover, in order to satisfy the demand and capacity constraints, f should satisfy the
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following condition for each arc a corresponding to a stage:

d(a) ≤ f(a) ≤ c(a).(2)

Here c(a) gives the ‘capacity’ for the stage, in our example c(a) = 15 throughout. Further-
more, d(a) denotes the ‘demand’ for that stage, that is, the lower bound on the number
of units required by the expected number of passengers as given in Table 2. That is, with
Table 3 we obtain the following lower bounds on the numbers of train-units:

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam-Rotterdam 3 4 3 3 2 2 2 2 3 4 4 4 2 2 1 2 1
Rotterdam-Roosendaal 1 2 3 3 2 2 2 2 2 4 5 4 3 2 2 1 1
Roosendaal-Vlissingen 3 2 2 2 2 2 2 2 2 3 4 3 2 2 1

train number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen-Roosendaal 1 3 3 3 2 2 2 2 2 2 3 2 2 1 1
Roosendaal-Rotterdam 2 3 4 3 4 2 2 2 2 2 2 3 2 1 1 1 1
Rotterdam-Amsterdam 1 2 4 4 3 4 3 2 2 3 3 4 4 3 2 1 1 1

Table 4. Lower bounds on the number of train-units

Note that, by the flow conservation law, at any section of the graph in Figure 7.1, the
total flow on the arcs crossing the section is independent of the choice of the section. It
gives the number of train-units that are used. This number is also equal to the total flow
on the ‘overnight’ arcs. So if we wish to minimize the total number of units deployed, we
could restrict ourselves to:

Minimize
∑

a∈A◦

f(a).(3)

Here A◦ denotes the set of overnight arcs. So |A◦| = 4 in the example.
It is easy to see that this fully models the problem. Hence determining the minimum

number of train-units amounts to solving a minimum-cost circulation problem, where the
cost function is quite trivial: we have cost(a) = 1 if a is an overnight arc, and cost(a) = 0
for all other arcs.

Having this model, we can apply standard min-cost circulation algorithms, based on min-
cost augmenting paths and cycles ( Jewell [1958], Iri [1960], Busacker and Gowen [1960],
Edmonds and Karp [1972]) or on ‘out-of-kilter’ (Fulkerson [1961], Minty [1960]. Implemen-
tation gives solutions of the problem (for the above data) in about 0.05 CPUseconds on an
SGI R4400. (See also the classical standard reference Ford and Fulkerson [1962] and the
recent encyclopedic treatment Ahuja, Magnanti, and Orlin [1993].

Alternatively, the problem can be solved easily with any linear programming package,
since by the integrality of the input data and by the total unimodularity of the underlying
matrix the optimum basic solution will have integer values only. With the fast linear
programming package CPLEX (version 2.1) the following optimum solution was obtained
in 0.05 CPUseconds (on an SGI R4400):

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam-Rotterdam 3 4 3 3 2 2 2 2 5 5 4 4 2 2 1 2 1
Rotterdam-Roosendaal 1 2 3 3 2 2 2 2 2 4 5 4 3 2 2 1 1
Roosendaal-Vlissingen 3 2 2 2 2 2 2 2 2 3 4 3 2 2 1

train number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen-Roosendaal 1 3 3 3 2 2 2 2 2 2 3 2 2 1 4
Roosendaal-Rotterdam 2 4 4 3 4 2 2 2 2 3 2 4 3 1 1 1 1
Rotterdam-Amsterdam 1 2 4 4 3 4 3 2 2 3 3 4 4 3 2 1 1 1

Table 5. Minimum circulation with one type of stock
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Required are 22 units, divided during the night over the four couple-stations as follows:

number of number of
units carriages

Amsterdam 4 12
Rotterdam 2 6
Roosendaal 8 24
Vlissingen 8 24

Total 22 66

Table 6. Required stock (one type)

It is quite direct to modify and extend the model so as to contain several other problems.
Instead of minimizing the number of train-units one can minimize the amount of carriage-
kilometers that should be made every day, or any linear combination of both quantities. In
addition, one can put an upper bound on the number of units that can be stored at any of
the stations.

Instead of considering one line only, one can more generally consider networks of lines
that share the same stock of railway material, including trains that are scheduled to be
split or combined. (Nederlandse Spoorwegen has trains from The Hague and Rotterdam
to Leeuwarden and Groningen that are combined to one train on the common trajectory
between Utrecht and Zwolle.)

If only one type of unit is employed for that part of the network, each unit having the
same capacity, the problem can be solved fast even for large networks.

7.3. More types of trains

The problem becomes harder if there are several types of trains that can be deployed
for the train service. Clearly, if for each scheduled train we would prescribe which type of
unit should be deployed, the problem could be decomposed into separate problems of the
type above. But if we do not make such a prescription, and if some of the types can be
coupled together to form a train of mixed composition, we should extend the model to a
‘multi-commodity circulation’ model.

Let us restrict ourselves to the case Amsterdam-Vlissingen again, where now we can
deploy two types of two-way train-units, that can be coupled together. The two types are
type III, each unit of which consists of 3 carriages, and type IV, each unit of which consists
of 4 carriages. The capacities are given in the following table:

type III IV

first class 38 65

second class 163 218

Table 7. Number of seats

Again, the demands of the train stages are given in Table 2. The maximum number of
carriages that can be in any train is again 15. This means that if a train consists of x units
of type III and y units of type IV then 3x+ 4y ≤ 15 should hold.

It is quite easy to extend the model above to the present case. Again we consider the
directed graph D = (V,A) as above. At each arc a let f(a) be the number of units of
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type III on the stage corresponding to a and let g(a) similarly represent type IV. So both
f : A −→ Z+ and g : A −→ Z+ are circulations, that is, satisfy the flow circulation law:

∑

a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a),

∑

a∈δ−(v)

g(a) =
∑

a∈δ+(v)

g(a),

(4)

for each vertex v. The capacity constraint now is:

3f(a) + 4g(a) ≤ 15(5)

for each arc a representing a stage.
The demand constraint can be formulated as follows:

38f(a) + 65g(a) ≥ p1(a),
163f(a) + 218g(a) ≥ p2(a),

(6)

for each arc a representing a stage, where p1(a) and p2(a) denote the number of first class
and second class seats required (Table 2). Note that in contrary to the case of one type
of unit, now we cannot speak of a minimum number of units required: there are now two
dimensions, so that minimum train compositions need not be unique.

Let costIII and costIV represent the cost of purchasing one unit of type III and of type
IV, respectively. Although train-units of type IV are more expensive than those of type III,
they are cheaper per carriage; that is:

costIII < costIV < 4
3costIII.(7)

This is due to the fact that engineer’s cabins are relatively expensive.
One variant of the problem is to find f and g so as to

Minimize
∑

a∈A◦

(costIIIf(a) + costIVg(a)).(8)

However, the classical min-cost circulation algorithms do not apply now. One could
implement variants of augmenting paths and cycles techniques, but they generally lead to
fractional circulations, that is, with certain values being non-integer.

Similarly, when solving the problem as a linear programming problem, we loose the
pleasant phenomenon observed above that we automatically would obtain an optimum so-
lution f, g : A −→ R with integer values only. (Also Ford and Fulkerson’s column generation
technique Ford and Fulkerson [1958] yields fractional solutions.)

So the problem is an integer linear programming problem, with 198 integer variables.
Solving the problem in this form with the integer programming package CPLEX (version
2.1) would give (for the Amsterdam-Vlissingen example) a running time of several hours,
which is too long if one wishes to compare several problem data. This long running time
is caused by the fact that, despite a fractional optimum solution is found quickly, a large
number of possibilities should be checked in a branching tree (corresponding to rounding
fractional values up or down) before one has found an integer-valued optimum solution.

However, there are ways of speeding up the process, by sharpening the constraints and
by exploiting more facilities offered by CPLEX.
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The conditions (5) and (6) can be sharpened in the following way. For each arc a
representing a stage, the two-dimensional vector (f(a), g(a)) should be an integer vector in
the polygon

Pa := {(x, y)|x ≥ 0, y ≥ 0, 3x+4y ≤ 15, 38x+65y ≥ p1(a), 163x+218y ≥ p2(a)}.(9)

For instance, the trajectory Rotterdam-Amsterdam of train 2132 gives the polygon

Pa = {(x, y)|x ≥ 0, y ≥ 0, 3x+ 4y ≤ 15, 38x+ 65y ≥ 47, 163x+ 218y ≥ 344}.(10)

In a picture:
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Figure 1.2. The polygon Pa

In a sense, the inequalities are too wide. The constraints given in (10) could be tightened
so as to describe exactly the convex hull of the integer vectors in the polygon Pa (the ‘integer
hull’), as in:
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Figure 1.3. The integer hull of Pa

Thus for segment Rotterdam-Amsterdam of train 2132 the constraints (10) can be sharp-
ened to:

x ≥ 0, y ≥ 0, x+ y ≥ 2, x+ 2y ≥ 3, y ≤ 3, 3x+ 4y ≤ 5.(11)
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Doing this for each of the 99 polygons representing a stage gives a sharper set of inequalities,
which helps to obtain more easily an integer optimum solution from a fractional solution.
(This is a weak form of application of the technique of polyhedral combinatorics.) Finding all
these inequalities can be done in a pre-processing phase, and takes about 0.04 CPUseconds.

Another ingredient that improves the performance of CPLEX when applied to this
problem is to give it an order in which the branch-and-bound procedure should select
variables. In particular, one can give higher priority to variables that correspond to peak
hours (as one may expect that they form the bottleneck in obtaining a minimum circulation),
and lower priority to those corresponding to off-peak periods.

Implementation of these techniques makes that CPLEX gives a solution to the Amster-
dam-Vlissingen problem in 1.58 CPUseconds (taking costIII = 4 and costIV = 5).

train number 2123 2127 2131 2135 2139 2143 2147 2151 2155 2159 2163 2167 2171 2175 2179 2183 2187 2191

Amsterdam-Rotterdam 0+2 0+3 4+0 0+2 0+2 1+2 0+2 1+1 0+3 2+1 0+3 1+2 0+2 0+1 1+2 0+1 0+1
Rotterdam-Roosendaal 0+1 0+2 0+2 4+0 0+2 0+2 1+3 0+3 1+1 0+3 2+2 0+3 0+2 1+1 2+0 1+3 1+0
Roosendaal-Vlissingen 0+2 0+2 0+2 2+0 0+1 0+1 0+2 0+2 2+0 0+2 2+1 0+2 0+2 2+0 0+1

train number 2108 2112 2116 2120 2124 2128 2132 2136 2140 2144 2148 2152 2156 2160 2164 2168 2172 2176

Vlissingen-Roosendaal 1+0 0+3 1+2 0+2 0+2 0+1 1+1 1+1 0+1 0+2 0+2 2+0 0+2 2+0 0+1
Roosendaal-Rotterdam 1+2 3+0 0+3 0+2 1+2 0+2 2+1 1+3 0+1 0+3 1+3 0+3 1+1 0+1 2+2 0+1 1+0
Rotterdam-Amsterdam 0+1 0+2 4+0 0+3 0+3 1+2 0+2 2+0 0+2 1+1 0+3 1+2 0+3 1+1 0+1 0+2 0+1 0+1

Table 8. Minimum circulation with two types of stock.
x+ y means: x units of type III and y units of type IV

In total, one needs 7 units of type III and 12 units of type IV, divided during the night
as follows:
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number of number of total total
units units number of number of

type III type IV units carriages

Amsterdam 0 2 2 8
Rotterdam 0 2 2 8
Roosendaal 3 3 6 21
Vlissingen 2 5 7 26

Total 5 12 17 63

Table 9. Required stock (two types)

So comparing this solution with the solution for one type only (Table 6), the possibility
of having two types gives both a decrease in the number of train-units and in the number
of carriages needed.

Interestingly, it turns out that 17 is the minimum number of units needed and 63 is the
minimum number of carriages needed. (This can be shown by finding a minimum circulation
first for costIII = costIV = 1 and next for costIII = 3, costIV = 4.)

So any feasible circulation with stock of Types III and IV requires at least 17 train-
units and at least 63 carriages. In other words, the circulation is optimum for any cost
function satisfying (7). We observed a similar phenomenon when checking other input data
(although there is no mathematical reason for this fact and it is not difficult to construct
examples where it does not show up).

Again variants as described at the end of Section 7.2 also apply to this more extended
model. One can include minimizing the number of carriage-kilometers as an objective, or
the option that in some of the trains a buffet section is scheduled (where some of the types
contain a buffet). Moreover, one can consider networks of lines.

Our research for NS in fact has focused on more extended problems that require more
complicated models and techniques. One requirement is that in any train ride Amsterdam-
Vlissingen there should be at least one unit that makes the whole trip. Moreover, it is
required that, at any of the four stations given (Amsterdam, Rotterdam, Roosendaal,
Vlissingen) one may either couple units to or decouple units from a train, but not both
simultaneously. Moreover, one may couple fresh units only to the front of the train, and
decouple laid off units only from the rear. (One may check that these conditions are not
met by all trains in the solution given in Table 8.)

This all causes that the order of the different units in a train does matter, and that
conditions have a more global impact: the order of the units in a certain morning train can
still influence the order of some evening train. This does not fit directly in the circulation
model described above, and requires an extension. The method we have developed for NS so
far, based on introducing extra variables, extending the graph described above and utilizing
some heuristic arguments, yields a running time (with CPLEX) of about 30 CPUseconds
for the Amsterdam-Vlissingen problem.
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