22C:137/22M:152 Homework 2
Due: Tuesday, 4/26

Notes: (a) Solve all 8 problems listed below. We will grade some 5-subset of these. (b) It is
possible that solutions to some of these problems are available to you via other graph theory
books or on-line lecture notes, etc. If you use any such sources, please acknowledge these in your
homework. You will benefit most from the homework, if you sincerely attempt each problem on
your own first, before seeking other sources. (c) It is okay to discuss these problems with your
classmates. Just make sure that you take no written material away from these discussions.

1. Problem 5.32 (iv), Section 5.5, page 35, Schrijver’s notes.
2. Problem 5.36, Section 5.5, page 35, Schrijver’s notes.

3. Problem 5.37, Section 5.5, page 35, Schrijver’s notes.

Let G = (V, E) be a connected graph and let ¥ > 0. Show that there exist k pairwise edge-
disjoint spanning trees, iff for each ¢, for each partition (V1,Vs,...,V;) of V into t classes,
there exist at least k(¢ — 1) edges connecting different classes of this partition.
Solution: (=) Suppose G has k edge disjoint spanning trees. Each spanning tree is a basis
in the cycle matroid M (G) of G. Thus M (G) has k pairwise disjoint basis. Using the claim
in 5.36 we conclude that

k(ru (B) — ru(B') < |E — B 1)

for any E' C E. Now fix a t and a partition (V1,V5,...,V;) of V. Let E; be the edges in
the induced subgraph G[E;] and let E' = U!_,E;. Now note that E’ induces ¢ connected
components in G and therefore ry(E') = n — t, where n = |V|. Also, rp(E) =n — 1. This
implies that the L.H.S. of inequality (1) is k(t—1). Also, note that the R.H.S. of inequality (1)
equals the number of edges in G that connect different classes in the partition (V1, Va,..., V).
Since the choice of ¢ and the choice of the partition (V1, Vs, ..., V;) are arbitrary, this implies
that for each ¢ and for each partition (V1,Va,...,V;) of V into ¢ classes, there exist at least
k(t — 1) edges connecting different classes of this partition.

(«=) Suppose that for each ¢ and for each partition (Vq,Va,...,V;) of V into ¢ classes, there
exist at least k(¢ — 1) edges connecting different classes of this partition. Consider and
arbitrary subset of edges E' C E and suppose that E' induces ¢ > 1 connected components.
Let S C F be the set of edge connecting different connected components of G[E']. Note that
|E — E'| > |S|. Also, we have that |S| > k(t — 1) and therefore |E — E'| > k(t — 1). As
shown earlier in the proof, k(ry (E) — rp(E')) = k(t — 1). and therefore we have |E — E'| >
k(ry(E) — ry(E')). By 5.36 this means that M (G) has k pairwise disjoint basis, which is
another way of saying that G has k pairwise edge disjoint spanning trees.

4. Let D = (V,A) be a directed graph. For any r € V, an r-arborescence is a subgraph
D" = (V,A") such that (i) |[A’| = |V| — 1 and (ii) there is a directed path from r to every
vertex in V. Show that given a directed graph D = (V, A) and a weight function w: A — R™
there is a polynomial time algorithm to find a mimimum weight arborescence in D.

Hint: Use the fact that the heaviest common independent set of two weighted matroids can
be found in polynomial time.

Solution: Let M (D) = (A,Zys) be the cycle matroid of D. Note that each independent set
of M(D) is a set of arcs A’ C A such that the underlying undirected graph of D[A’] is acyclic.

Without loss of generality, let V= {1,2,...,n}. For each i € V, let A; be the set of edges
in-coming into vertex i. Let T(D) = (A,Zr) be the transversal matroid with respect to the
sets A1, Aq, ..., Ap.

It is easy to verify that if I is an independent set common to M (D) and T'(D), then |I]| <
|V| —1 and if |[I| = |V| — 1 then I is an r-arborescence of D for some r € V. Thus using
Edmond’s matroid intersection algorithm, one can find in polynomial time if D has an r-
arborescence for some r € V. Furthermore, if the arcs of D have associated non-negative
weights, then assuming that D has an r-arborescence, we can use Edmond’s weighted matroid
intersection algorithm to find in polynomial time an r-arborescence of maximum weight, for
some r € V. Finally, let W = maxccqw(e). To each arc e € A, assign a new weight
w'(e) = W — w(e). Note that these weights are all non-negative and furthermore a heaviest
r-arborescence with respect to the weight function w’ is a lightest r-arborescence with respect
to the weight function w. This gives a polynomial time algorithm to find a minimum weight
r-arborescence in D, for some r € V.

. Problem 15, Chapter 5, page 118. This problem leads to a simple algorithm to compute a
A-coloring for graphs that are not cliques or odd cycles.

Solution (i): Let the greedy algorithm use the palette {1,---, A(G)}. The algorithm colors
each vertex with the smallest available color. Suppose we have an ordering of the vertices
v1,--+,Vp such that degree(vy,) = A(G), {vi,vn}, {ve,vn} € E(G), and {vi,v2} ¢ E(G).
Then the algorithm colors v; and ve with 1. For any v;, i = 3,---,n — 1, degree(v;) < A(G),
and there is at least one vertex v; in N(v;) with j > 4. Hence, when the algorithm colors v;,
we have colored at most A(G) — 1 neighbors of v;, leaving one color available for v;. Since
degree(v,) = A(G), and v1,v9 are colored 1, N(v,) uses at most A(G) — 1 colors, leaving at
least one available color for v,,.

Solution (ii) : Let £ = A(G), and let v be a vertex of maximum degree. Let uq,- - -, uy be the
neighbors of v. If {u;,u;} € E(G) for each 4,5 € {1,---,k}, then uy,---,u,v form a clique.
Hence for each vertex wu;, degree(u;) = k. Since G is not complete, and is connected there
is some vertex w adjacent to a vertex u;. But this implies degree(u;) = k + 1, contradicting
the fact that k is the maximum degree. Hence, u1,---,ug, v is not a clique and therefore we
must have two vertices u;,u; such that {u;, u;} € E(G).

Proof of Brooks’ Theorem using lemmas (i) and (ii) : Let G(V, E) be a graph satisfying
the conditions of Brooks’ theorem. Let v, be a vertex of maximum degree. From Lemma
(ii), there are two vertices v1,v2 adjacent to v, such that {vi,v2} € E(G).

Now, consider a spanning tree of G rooted at vy, where each vertex except vy, vo are labeled in
decreasing order of their distance from v,. This gives us an ordering satisfying the conditions
of Lemma, (i), and from the proof of Lemma (i), we know that the greedy algorithm uses

at most A(G) colors. Hence, x(G) < A(G) for graphs satisfying the conditions of Brooks’
theorem.

It remains to be shown that it is sufficient to consider graphs with A(G) > 3 and k(G) > 2.
If A(G) = 0,1, then the graph is either a single vertex or a single edge. In either case, the
graph is complete. If A(G) = 2, then the graph is either a path or a cycle. If the graph
is a path or an even cycle, the graph is bipartite and hence x(G) = 2. Otherwise G is an
odd cycle and doesn’t satisfy the conditions of Brooks’ theorem. To see that it is sufficient
to consider 2 connected graphs, If K(G) = 1, the graph has a cut vertex v. Apply Brooks’
theorem inductively to the components of G — v, and reorder the color classes so that the
color of v is the same in each component.

. Problem 27, Chapter 5, page 119.

Proof: Since K} contains K" as a subgraph, it follows that the choice number of K7 is at
least 7. We show that ch(K?2) < r by induction.

The base case K4 consists of 2 disjoint vertices and hence is easily verified.

For the inductive case, assume that ch(Kg_l) =r—1. Let Ay,---, A, be the r parts of the
graph, and let u;,v; denote the two vertices in A;. Let L(v) denote the list associated with
vertex v. Suppose there exists a partition A; such that L(u;)NL(v;) # 0. Let ¢ € L(u;)NL(v;).-
Let H = G\ A;. Set L(v) = L(v) \ ¢ for all vertices v € H such that ¢ € L(v). From the
inductive hypothesis, H has a proper vertex coloring that does not use the color ¢, and we
can extend the coloring of H to a coloring of G by setting color(u;) = color(v;) = c.

On the other hand if for each partition L(u;) N L(v;) = (. For any partition A;, note that
N(u;) = N(v;) and |N(u;)| = |N(v;) = 2r — 2, where N (v) is the neighborhood of vertex v.
Since L(u;) N L(v;) = 0, it follows that |L(u;) U L(v;)| = 2r. Hence, we must have 2 unused
colors in L(u;) U L(v;), say ¢,c. If there exists a coloring of H = G \ A; where ¢ € L(u;) and
c € L(v;), we can easily extend the coloring of H to a coloring of G. Hence, assume that
in all colorings of H, both unused colors of L(u;) U L(v;) belong to L(u;) wlog. This implies
that in any proper coloring of H, for all vertices w such that ¢ = color(w) € L(v;), both
¢ ¢ L(w) and ¢ ¢ L(w). i.e., there is no vertex w that is colored with a color ¢ € L(v;) and
contains either ¢ or ¢/. If this was the case, the following re-arrangement of colors allows us
to extend a proper coloring of H to a proper coloring of G. Set color(v;) = ", color(w) = ¢
and color(u;) = ¢’ (assuming wlog that ¢ € L(w)). This contradicts the condition that there
is no coloring where we have one unused color in L(u;) and one unused color in L(v;).

Now consider H with the following lists. Set L(w) = L(w)\c" for each w € H with ¢ € L(w).
Set L(w) = L(w) \ ¢ for each w € H with ¢ € L(w). Note that the previous condition implies
|L(w)| > r — 1 for each w € H. Again, applying the inductive hypothesis, we have a proper
vertex coloring of H. This can be extended to a proper coloring of G as follows. Since neither
¢’ nor ¢ is used up for any vertex of H, set color(u;) = ¢ and color(v;) = ¢”. 0

. The greedy algorithm for graph coloring takes as input a graph G and an ordering o of the
vertices, processes the vertices according to o, and to each vertex v assigns the smallest
available color 7 € N.

(a) Prove that every graph G has a vertex ordering o such that the greedy algorithm with
input G and o uses x(G) colors.

(b) For all k¥ € N, inductively construct a tree T with maximum degree k£ and an ordering
oy of V(T}) such that greedy algorithm with input 7y and oy uses k + 1 colors. Note
that this shows that the performance ratio of the greedy algorithm may be as bad as
(A(G) +1)/2.

Solution : Let ¢ : V — N be a coloring G that uses exactly x(G) colors. Let o be an
ordering that satisfies : if c(u) < ¢(v) for any vertices u,v € V, then o(u) < o(v). Then,
the greedy algorithm processes all vertices with ¢(v) = 1, followed by vertices with c¢(v) = 2,
and so on, and each vertex recieves the same coloring as ¢. Hence the greedy algorithm uses
exactly x(G) colors.

. For all kK € N, inductively construct a tree T}, with maximum degree k and an ordering oy,
of V(T}) such that the greedy algorithm with input 7} and oy uses k + 1 colors. Note that
this shows that the performance of the greedy algorithm may be as bad as (A(G) + 1)/2.

Solution : Let Ty be a single vertex. Given T7,---,T; 1, we construct 7; by adding a leaf
to each vertex of T;_1. Then, A(T;) = i. The ordering oy is defined as follows. The leaves of
Ty, come first in the order, followed by the leaves of Ty_1, and so on.

The construction is such that the leaves of T} is adjacent to each vertex of T;_; for each

k = 1,2,---. Hence, applying the greedy algorithm with the ordering o} defined above
ensures that each vertex of T3, ¢ =0, ---,k — 1 is adjacent to at least one vertex of each color
1,2,---,k —i. Hence the single vertex of T} is colored with color k£ + 1. Since the chromatic

number of a tree is 2, the performance of the greedy algorithm is atleast (A(G) + 1)/2.

. Let G be the unit distance graph in the plane; the vertices are all (infinitely many) points in
the plane, with vertices joined by an edge if the Euclidean distance between them is exactly
1. Prove that G is 7-colorable but not 3-colorable.

Solution :

The graph shown in Figure 1 is a unit-distance graph that is not 3-colorable. This easily
follows since we require 3 colors for the pentagon outside and the two vertices are adjacent
to vertices 3 vertices each, at least one set of which must use 3 colors.

The graph shown in Figure 2 shows a coloring of the unit-distance graph using 7 colors.

Figure 1: The Moser graph, a unit-distance graph whose chromatic number is 4

Figure 2: A periodic tiling of the plane with 7 colors. The diameter of the hexagon is < 1

