22C 131 Homework 2 : Solutions

Rajiv Raman

March 8, 2007

1. (Problem 5.13) Let $USELESS_{TM} = \{ < M > | M \text{ is a TM with one or more useless states} \}$. Show that A_{TM} reduces to $USELESS_{TM}$. Assume for the sake of contradiction that TM R decides $USELESS_{TM}$. Construct TM S that uses R to decide A_{TM} . The new TM has a useless state exactly when M doesn't accept w. For this purpose, we use the universal turing machine.

TM S : On input $\langle M, w \rangle$

TM T : On input x :

- a. Replace x on the input by the string $\langle M, w \rangle$.
- b. Run the universal TM U to simulate $\langle M, w \rangle$.
- (Note that this TM uses all it's states)

If U accepts, enter a special state q_A and *accept*.

- 1. Run R on T to determine whether T has any useless states.
- 2. If *R* rejects, *accept*. Otherwise *reject*.

If M accepts w, then T enters all states, but if M doesn't accept w, then T avoids q_A . So T has a useless state, q_A iff M doesn't accept w.

2. (Problem 5.15) Let $LM_{TM} = \{ < M, w > | M \text{ ever moves left while computing } w \}$. LM_{TM} is decidable. We construct a TM $LEFT_{TM}$ that decides LM_{TM} . To construct this TM we claim that any TM that ever makes a left move must do so in at most $w + n_M + 1$ steps, where n_M is the number of states of M, and w is the size of the input (we use w to denote both the input and it's size, but the usage should be clear from context). To see this, assume TM M makes a LEFT move, and consider the shortest computation path $p = q_0, q_1 \cdots, q_s$ of M ending in a LEFT move. First note that since M has only been scanning blanks from state q_w , we may remove any cycles in the computation path and still be left with a legal computation path ending in

a left move. Hence, p does not contain cycles, and can have length at most $w + n_M + 1$. Now we can construct $LEFT_{TM}$ as follows :

TM $LEFT_{TM}$: On input $\langle M, w \rangle$

- 1. Simulate M on w for $n_M + w + 1$ steps.
- 2. if M ever makes a left move *accept*. Otherwise *reject*.
- 3. (Problem 5.17) The PCP over a unary alphabet is decidable. We describe a TM M that decides unary PCP. Given a unary PCP instance,

TM M: On input $\langle P \rangle$

- 1. Check if $a_i = b_i$ for some *i*. If so, *accept*.
- 2. Check if there exist i, j such that $a_i > b_i$ and $a_j < b_j$. If so, *accept*, else *reject*.

In the first stage, M checks for a single domino which forms a match. In the second stage, M looks for two dominos which form a match. If it finds such a pair, it can construct a match by picking $(b_j - a_j)$ copies of the i^{th} domino, putting them together with $(a_i - b_i)$ copies of the j^{th} domino. This construction has $a_i(b_j - a_j) + a_j(a_i - b_i) = a_ib_j - a_jb_i$ 1's on top, and $b_i(b_j - a_j) + b_j(a_i - b_i) = a_ib_j - a_jb_i$ 1's on the bottom. If neither stages of M accept, the problem instance contains dominos with all upper parts having more/less 1's than the lower parts. In such a case, no match exists and therefore M rejects.

4. (Problem 5.33) First we show that $A_{TM} \leq_M \overline{S}$. This shows S is not turing recognizable. The function f can be described as follows.

f: On input $\langle M, w \rangle$,

1. Construct machine M_1 that does the following :

 M_1 : On input x,

Run M on w. If M accepts w, reject.

Otherwise if $x = \langle M_1 \rangle$ accept.

2. Output $< M_1 >$.

If M accepts w, then $L(M_1) = \emptyset$. Hence, $\langle M_1 \rangle$ is in \overline{S} . Conversely, if M does not accept w, then $L(M_1) = \{\langle M_1 \rangle\}$, and hence $\langle M_1 \rangle \in S$. This shows S is not turing recognizable. We now show that \overline{S} is not turing recognizable by reducing from A_{TM} to S.

g: On input $\langle M, w \rangle$,

1. Construct machine M_2 that does the following :

 M_2 : On input xRun M on w. If M accepts w, check if $x = \langle M_2 \rangle$. If it is, then *accept*. Otherwise *reject*.

2. Output $< M_2 >$.

In this case, if M accepts w, $L(M_2) = \langle M_2 \rangle$, and hence, $\langle M_2 \rangle \in S$. Otherwise $L(M_2) = \emptyset$ and $\langle M_2 \rangle \in \overline{S}$. Hence, \overline{S} is not turing recognizable.

5. (Problem 5.35) Let $X = \{ \langle M, w \rangle | M \text{ is a single-tape TM that never modifies the portion of the tape that contains the input <math>w \}$. We show that X is undecidable by reducing from A_{TM} . Let R be a TM that decides X. We use R to construct a TM S that decides A_{TM} .

TM S: On input $\langle M, w \rangle$

TM M_X : On input $\langle M, w \rangle$

- a. Mark the right end of the input with a symbol $\$ \notin \Gamma_M$.
- b. Copy w to the part of the tape after \$. Call this part w'
- c. Simulate M on w'.
- d. If M accepts, write any character
 - on the first cell of the input tape and *accept*.
- e. Otherwise *reject*.
- 1. Input $\langle M_X, w \rangle$ to R.
- 2. If R accepts, accept. Otherwise reject.

Note that M_X ever modifies it's input iff M accepts w. Hence, we have decided A_{TM} , a contradiction.