22C:131 Midterm Exam
Tuesday, 10/9

Notes: (a) Undergraduate students are required to solve the first 3 problems in the exam. Graduate students are required to solve all problems. (b) This is an open book/notes exam. (c) For graduate students, each problem is worth 50 points. For undergraduate students, Problem 1 is worth 70 points and Problems 2 and 3 are worth 65 points each.

1. Below I provide 10 “claims.” For each given “claim” state whether it is “True”, “False,” or has unknown status. If your answer is “True” or “False,” provide a 1-2 sentence justification for your answer.

(a) If $NP = coNP$ then $P = NP$.

UNKNOWN.

(b) Either $P \subseteq NP$ or $NP \subseteq EXP$.

TRUE

By Deterministic Time Hierarchy Theorem $P \subsetneq EXP$. Since $P \subseteq NP \subseteq EXP$ (Claim 2.4), either $P \subsetneq NP$ or $NP \subsetneq EXP$ (or both).

(c) $Connectivity \leq_p 3SAT$.

$Connectivity \in P \subseteq NP$ and $3SAT$ is NP-hard. Therefore $Connectivity \leq_p 3SAT$.
22C:131 Midterm Exam
Tuesday, 10/9

Notes: (a) Undergraduate students are required to solve the first 3 problems in the exam. Graduate students are required to solve all problems. (b) This is an open book/notes exam. (c) For graduate students, each problem is worth 50 points. For undergraduate students, Problem 1 is worth 70 points and Problems 2 and 3 are worth 65 points each.

1. Below I provide 10 “claims.” For each given “claim” state whether it is “True”, “False,” or has unknown status. If your answer is “True” or “False,” provide a 1-2 sentence justification for your answer.

(a) If $NP = coNP$ then $P = NP$.

\textit{UNKNOWN.}

(b) Either $P \subseteq NP$ or $NP \subseteq EXP$.

\textit{TRUE}

By Deterministic Time Hierarchy Theorem $P \not\subseteq EXP$. Since $P \subseteq NP \subseteq EXP$ (Claim 2.4), either $P \not\subseteq NP$ or $NP \not\subseteq EXP$ (or both).

(c) Connectivity $\leq_P 3SAT$.

Connectivity $\in P \subseteq NP$ and 3SAT is NP-hard. Therefore $Connectivity \leq_P 3SAT$.

(d) $NP \text{-hard} \setminus NP \neq \emptyset$. TRUE.

$HALT$ is an example of a language in $NP \text{-hard}$ that is not in NP.

(e) $3SAT \in DTIME(2^{\sqrt{n}})$. UNKNOWN
(Though unlikely)

(f) $DTIME(2^{\sqrt{n}}) \subseteq DTIME(n \cdot 2^{\sqrt{n}})$. TRUE.

By the Deterministic Time Hierarchy Theorem, $DTIME(2^{\sqrt{n}}) \not\subseteq DTIME(g(n))$ for any $g(n)$ such that $\sqrt{n} \cdot 2^{\sqrt{n}} = o(g(n))$.

Since $\sqrt{n} \cdot 2^{\sqrt{n}} = o(n \cdot 2^{\sqrt{n}})$, we obtain the above claim.

(g) $3SAT \leq_P SAT$. TRUE.

SAT is NP-hard and therefore $\forall L \in NP$, $L \leq_P SAT$. We know that $3SAT \in NP$ and hence $3SAT \leq_P SAT$.
(h) \((NP \cap coNP) \setminus P \neq \emptyset.\) **UNKNOWN.**
(Though quite likely)

(i) \(coEXP = EXP.\) **TRUE.**

For any \(L \in EXP,\) \(L\) can be decided by a DTM in exponential time. Therefore for any \(L \in EXP, \neg L\) can be decided by a DTM in exponential time. Since \(coEXP = \{\neg L | L \in EXP\},\) every language \(L \in coEXP\) can also be decided in exponential time.

\(\therefore coEXP \subseteq EXP\) & similarly \(EXP \subseteq coEXP,\) implying that \(coEXP = EXP.\)

(j) If \(TAUTOLOGY \in P\) then \(P = NP.\) **TRUE.**

\(TAUTOLOGY\) is \(coNP\)-complete. Therefore, if \(TAUTOLOGY \in P,\)

\(coNP = P.\) Thus every \(L \in coNP\) can be decided by a DTM in poly-time. Thus every \(L \in coNP, \neg L\) can be decided by a DTM in poly-time. Thus every \(L \in NP\) can be decided by a DTM in poly-time. Thus \(NP \subseteq P \Rightarrow NP = P = coNP.\)
2. Define a function \(\text{three} : \{0, 1\}^* \to \{0, 1\} \) as follows:

\[
\text{three}(\alpha) = \begin{cases}
1 & \text{if} |L(M_\alpha)| = 3 \\
0 & \text{otherwise}
\end{cases}
\]

Show that \(\text{three} \) is uncomputable.

\textbf{Hint:} Use reduction from ACCEPT.

\textbf{Proof:} Suppose that \(\text{three} \) is computable and let \(T \) be a TM that computes \(\text{three} \). We now construct a TM for computing ACCEPT.

Algorithm/TM for ACCEPT

\textbf{Input:} \(\langle \alpha, x \rangle \in \{0, 1\}^* \times \{0, 1\}^* \)

1. Construct a TM \(M' \) that behaves as follows:

 - On input \(w \in \{0, 1\}^* \),
 - (a) \(M' \) runs \(M_\alpha \) on \(x \).
 - (b) If \(M_\alpha \) halts & accepts \(x \) then
 - If \(w \in \{0, 00, 000\} \), \(M' \) accepts \(w \)
 - Else \(M' \) rejects \(w \)
 - (c) If \(M_\alpha \) halts & rejects \(x \) then
 - \(M' \) rejects \(w \)

2. Compute \(T(\text{three}(LM')) \) and output 1 (i.e., accept) if

\(T(\text{three}(LM')) = 1 \); output 0 (i.e., reject) otherwise.

Correctness of reduction follows from the fact that if \(M_\alpha \) accepts \(x \), \(L(M') \supseteq \{0, 00, 000\} \) and if \(M_\alpha \) does not accept \(x \), then \(L(M') = \emptyset \). \(\square \)
3. These questions refer to the proof of the Cook-Levin Theorem (Lemma 2.11). Suppose that $L \in NP$. Then there is a (deterministic) TM M and a polynomial $p(\cdot)$ such that for all $x \in \{0, 1\}^*$, $x \in L$ iff there exists $u \in \{0, 1\}^{p(|x|)}$ such that $M(x, u) = 1$. Suppose that for this particular L, $p(n) = n$ and M runs in time n^2 where $|x| = n$. Furthermore, suppose that the alphabet for M (denote Γ) is $\{0, 1, \triangleright, \square\}$ and that M has 5 states (i.e., $|Q| = 5$). As in the proof, assume that M uses two tapes (an input take and a work/output tape) and that M is oblivious.

\[[15] \] (a) Let c denote the fewest number of bits needed to represent a snapshot of M. Calculate the value of c. Show you work for partial credit.

A snapshot is an element in $Q \times \Gamma \times \Gamma$ and therefore can take on $5 \times 4 \times 4 = 80$ possible values. It takes $\lceil \log_2 80 \rceil = 7$ bits to represent a snapshot.

\[[20] \] (b) For a string $x \in \{0, 1\}^n$, calculate the number of variables that the boolean formula φ_x has (as a function of n). Show your work for partial credit.

It takes $n + p(n) = 2n$ variables to represent the input. It takes 7 variables to represent each snapshot. There are $T(n) + 1 = n^2 + 1$ snapshots. Thus φ_x contains $7n^2 + 2n + 7$ variables.

\[[16] \] (c) Let $x \in \{0, 1\}^n$ and let φ_x be the boolean formula constructed from x. Let C be the smallest number such that every clause in φ_x has at most C literals. Calculate C. Show your work for partial credit.

The condition $z_i = F(z_{i-1}, y_{\text{inputpos}(i)}, z_{\text{prev(i)}})$ requires the largest clauses. Note that $F : \{0, 1\}^{2c+2} \rightarrow \{0, 1\}^c$ because z_{i-1} & $z_{\text{prev(i)}}$ take c bits each and $y_{\text{inputpos}(i)}$ takes 2 bits. The function $F : \{0, 1\}^{2c+2} \rightarrow \{0, 1\}^c$ can be represented using clauses of size $2c+2 = 16$. \[\therefore C = 16. \]
4. These questions refer to the proof of the Non-deterministic Time Hierarchy Theorem (Theorem 3.2) in Arora-Barak.

(a) The theorem requires that \(f(n+1) = o(g(n)) \). Where exactly in the proof is the requirement used? (Another way of asking the same question is, where exactly would the proof break down if we replaced the condition \(f(n+1) = o(g(n)) \) by the weaker condition \(f(n) = o(g(n)) \)?)

It is used in step (1) of D's definition, where D's output on input \(1^n \) is obtained by computing \(M_i \)'s output on \(1^{n+1} \). On input \(1^{n+1} \), \(M_i \) runs in time \(f(n+1) \) and for \(D \) to be able to simulate \(M_i \) to completion in time \(g(n) \), it has to be the case that \(f(n+1) = o(g(n)) \). If \(D \) were unable to simulate \(M_i \) to completion we could not claim that \(D(1^n) = M_i(1^{n+1}) \).

(b) Consider the description of the NDTM \(D \). In Case (1) (where \(f(i) < n < f(i+1) \)) \(D \) simulates \(M_i \) "using nondeterminism." Suppose that we change this step and make \(D \) simulate \(M_i \) deterministically, while retaining everything else in the description of \(D \). What would break down in the proof?

If \(D \) attempted to simulate \(M_i \) deterministically using a budget of \(n'' \) time (as in the textbook on Pg 70) then then \(D \) would not be able to simulate \(M_i \) to completion & we would not be able to claim that \(D(1^n) = M_i(1^{n+1}) \) for \(f(i) < n < f(i+1) \).

(b) Suppose we define the function \(f : \mathbb{N} \to \mathbb{N} \) as follows: \(f(1) = 2 \) and \(f(i+1) = 2 \cdot f(i) \) for all \(i > 1 \). Explain where the proof would break down if \(f \) were defined in this manner.

If \(f(i+1) = 2f(i) \) then in step (2) of D's definition at least \((f(i)+1)^{11} \) time, which would be far more than \(f(i+1) \). The proof in the textbook relies on step 2 finishing in \(O(n^{15}) \) time but \(2((f(i)+1)_{11}^{11}) \) asymptotically is \(2^{((n+1)_{11}^{11})} \), which is of course much larger than \(n^{15} \).