Solutions to HW2

1. To show that $L^+ \in NP$ we will show that there is a TM M and a polynomial p:

$$\forall y \in \{0,1\}^*: \ y \in L^+ \iff \exists u \in \{0,1\}^p|y|: M(u,y) = 1.$$

Suppose that $y = y_1y_2...y_m \in \{0,1\}^*$ and each $y_i \in \{0,1\}^*$, $1 \leq i \leq m$. M expects its certificate u to have the form

$$i_1, i_2, ..., i_k, c_1, c_2, ..., c_{k+1}$$

and interprets $i_1, i_2, ..., i_k$ as positions where its input y needs to be split into substrings $y_1, y_1y_2, ..., y_{k+1}$. Each c_j, $1 \leq j \leq k+1$, is taken to be the string certifying membership of y_j in L. Since $L \in NP$ we know that there is a TM M_L and a polynomial p_L such that $
exists x \in \{0,1\}^*: x \in L \iff \exists c \in \{0,1\}^p|x|: M_L(x,c) = 1$.

Now we describe the poly-time algo for M.

INPUT: $y = y_1y_2...y_m \in \{0,1\}^*$

CERTIFICATE: $u = (i_1, i_2, ..., i_k, c_1, c_2, ..., c_{k+1})$

1. Split y according to the positions $i_1, i_2, ..., i_k$ and obtain substrings

$$y_1 = y_1y_2...y_{i_1}, \quad y_2 = y_{i_1}y_{i_1+1}y_{i_1+2}...y_{i_2}, \quad ..., \quad y_{k+1} = y_{i_{k+1}}y_{i_{k+1}+1}...y_m$$

2. For $j = 1, 2, ..., k+1$ do
 * If $M_L(y_j, c_j) = 0$ then return 0

It is easy to see that M runs in time that is polynomial in $m = |y|$. Also note that size of certificate u is at most $O(m \log m) + m \cdot p_L(m)$. □
2. **HALT is NP-hard.**

 Proof: We show this by proving \(\text{SAT} \leq_p \text{HALT} \).

 Consider an algorithm that transforms a given boolean formula \(\varphi \) in CNF into \(\langle M_\varphi, 0 \rangle \), where \(M_\varphi \) is the TM described below:

 Turing Machine \(M_\varphi \)
 Input: \(w \in \{0, 1\}^* \)

 1. Run through all possible truth assignments to the variables in \(\varphi \) to determine if \(\varphi \) is satisfiable.

 2. If \(\varphi \) is satisfiable, then halt; else go into an infinite loop.

 Note that on any input \(w \in \{0, 1\}^* \), \(M_\varphi \) halts iff \(\varphi \) is satisfiable.

 Also note that the algo. that takes \(\varphi \) and transforms it into \(\langle M_\varphi, 0 \rangle \) takes constant time (i.e., time independent of \(|\varphi| \)).

3. Suppose that \(P = NP \). Recall that INDSET is the following decision problem:

 INDSET
 Input: Graph \(G = (V, E) \), positive integer \(k \)
 Question: Does \(G \) have an independent set of size \(\geq k \)?

 Since INDSET \(\in NP \) & since \(P = NP \), INDSET has a
polynomial-time algorithm. Let \(A_{IS} \) be an algorithm that solves INDSET in polynomial time for some polynomial \(P(n) \). Using \(A_{IS} \), we can design the following algorithm for the Maximum Independent Set problem.

Maximum Independent Set

Input: \(G = (V, E) \)

Output: Independent set \(I \subseteq V \) of maximum size.

1. Find largest \(k \) such that \(G \) has an independent set of size \(k \).

 (This can be done by calling \(A_{IS}(G, k) \) for \(k = |V|, \ |
 V| - 1, |V| - 2, \ldots \). If \(n = |V| \), the running time of
 Step 1 is at most \(n \cdot P(n) \).)

2. for each \(v \in V \) do
 - Let \(H \) be the graph obtained by deleting \(v \)
 and its neighbors \(N(v) \).
 - If \(A_{IS}(H, k-1) = \text{"yes"} \) then add \(v \) to
 the solution and return \(H \).

After Step 2 we know that \(G \) has an independent set
of size \(k \). Hence for some \(v \in V \), \(H = G \setminus \{v\} \cup N(v) \)
contains an independent set of size \(k-1 \). We use
Step 2 above to discover such a \(v \in V \). Note that
Step 2 takes at most \(n \cdot P(n) \) time.

We can then recurse \(\Box \) on \(H \) to find the remaining
\(k-1 \) elements of the size-\(k \) independent set in \(G \). The total running time of this is \(k \cdot n \cdot P(n) \leq n^2 \cdot P(n) \).
Let us use the notation \leq_c to denote poly-time Cook reducibility.

CLAIM: If $L \leq_c L'$ & $L' \leq_c L''$ then $L \leq_c L''$.

Proof: Suppose that M is a poly-time TM that decides L, given an oracle for deciding L'. Let M run in time $p(n)$. Suppose that M' is a poly-time TM that decides L', given an oracle for deciding L''. Let M' run in time $q(n)$.

We now modify M so that it can decide L in poly-time, given an oracle for L''. This will show that $L \leq_c L''$.

The modification to M is as follows:

1. When M writes on its magical extra tape and goes into its special "invocation" state, instead of calling an oracle, M simply initiates the execution of M'.

2. M uses M''s magical extra tape as its input tape & uses a completely new set of tapes (separate from M's tapes) along with its own magical tape needed for invoking an oracle to decide L''.

The number of tapes used by the modified M equals (roughly) the number of tapes it was using initially plus the number of tapes being used by M'. Also, the running time of M is the polynomial $P(q(n))$. Finally, note that M is a machine that decides L given an oracle for L''.

CLAIM: 3SAT \leq_c TAUTOLOGY

Proof: Given an instance ϕ of 3SAT, we can construct $\neg \phi$ and write it onto its magical extra tape & go into the "invocation" state for deciding TAUTOLOGY. If the oracle returns 1 then M outputs 0; if the oracle returns 0, then M outputs 1. It is easy to see that M runs in poly-time. \qed
5. Let \(\text{coNP}_2 \) denote the class of languages defined in Def. 2.19. Let \(\text{coNP}_2 \) denote the class of languages defined in Def. 2.20.

Claim: \(L \in \text{coNP}_1 \Rightarrow L \in \text{coNP}_2 \).

Proof: If \(L \in \text{coNP}_2 \), then \(L \in \text{NP} \). By Def. 2.1, there exists a polynomial \(p \) and a poly-time TM \(M \) such that \(\forall x \in \Sigma^*, x \in L \iff \exists u \in \Sigma^* \text{ s.t. } M(x,u) = 1 \).

This is equivalent to: \(\forall x \in \Sigma^*, x \in L \iff \forall u \in \Sigma^* \text{ s.t. } M(x,u) = 0 \). Construct a TM \(\overline{M} \) by modifying \(M \) to simply change its output from 1 to 0 and vice versa. Then, for a polynomial \(p \) and a poly-time TM \(\overline{M} \), \(\forall x \in \Sigma^*, x \in L \iff \forall u \in \Sigma^* \text{ s.t. } \overline{M}(x,u) = 1 \). Hence, by Def. 2.20, \(L \in \text{coNP}_2 \).

Claim: \(L \in \text{coNP}_2 \Rightarrow L \in \text{coNP}_1 \).

Proof: If \(L \in \text{coNP}_2 \), then by Def. 2.20, there exists a polynomial \(p \) and a poly-time TM \(M \):

\[
\forall x \in \Sigma^*, x \in L \iff \forall u \in \Sigma^* \text{ s.t. } M(x,u) = 1.
\]

Now construct a TM \(\overline{M} \) from \(M \) that outputs 1 when \(M \) outputs 0 and outputs 0 when \(M \) outputs 1. Then:

\[
\forall x \in \Sigma^*, x \in L \iff \forall u \in \Sigma^* \text{ s.t. } \overline{M}(x,u) = 0 \iff \forall x \in \Sigma^*, x \in L \iff \forall u \in \Sigma^* \text{ s.t. } \overline{M}(x,u) = 1.
\]

By Def. 2.1, \(L \in \text{NP} \) and \(\vdash L \in \text{coNP}_1 \).

The two claims above imply that \(\text{coNP}_1 = \text{coNP}_2 \).

6. Suppose there is a language \(L \subseteq 1^* \) that is \(\text{NP} \)-complete. Then \(\text{SAT} \leq_p L \). Suppose that \(A \) is an algorithm promised by \(\text{SAT} \leq_p L \). In other words, \(\forall x \in \Sigma^*, x \in \Sigma \text{ s.t. } A(x) \in L \). Furthermore, suppose that \(A \) runs in time \(n^c \). Hence, if \(|x| = n \),
then $|A(x)| \leq n^c$.

Now consider the following inefficient algorithm for SAT. Suppose the input is $\Phi(x_1, x_2, \ldots, x_m)$ and suppose that $|L(\Phi)| = n$. To determine if Φ is satisfiable, we create two new, smaller instances of SAT, namely Φ^T and Φ^F where Φ^T (Φ^F) is obtained from Φ by setting $x_1 = \text{TRUE}$ ($x_1 = \text{FALSE}$). Then we process Φ^T and Φ^F in a similar manner (by setting $x_2 = \text{TRUE}$ & $x_2 = \text{FALSE}$) to get a collection of 4^n SAT instances, each of size $\leq n$ and each containing $m-2$ variables. Continuing in this manner would yield an exponential algorithm.

However, we can use A to speed up this algorithm. Define the relation \sim on SAT instances as follows: $\Phi \sim \Phi'$ iff $A(\Phi) = A(\Phi')$. It is easy to see that \sim is an equivalence relation. Now note that any instance Φ' of SAT of size $\leq n$ is mapped by A to a unary string of length $\leq n^c$. Since there are at most n^c distinct unary strings of length $\leq n^c$, it means that SAT instances of size $\leq n$ can be partitioned into $\leq n^c$ equivalence classes by \sim. Furthermore, note that all SAT instances in the same equivalence class are either all satisfiable or all unsatisfiable. Thus, we can use A to prune the collection of SAT instances so that it never exceeds size n^c. This yields a poly-time algo. for SAT, implying that $P = NP$. \hfill \Box
7. **Claim:** If $P = NP$ then $\Sigma_2^{\text{SAT}} \in P$.

Proof: If $P = NP$, then $\text{coNP} = P$.

Now fix $x \in \{0,1\}^*$ and let $\phi_x(y)$ denote the CNF formula $\psi(x,y)$. Then determining if $\phi_x(y) = 1$ for all $y \in \{0,1\}^m$ is TAUTOLOGY $\in \text{coNP} = P$. Hence this problem has a polynomial time solution. Let T denote the algorithm that solves this problem in polynomial time.

To solve Σ_2^{SAT} we design a non-deterministic TM T that first "guesses" the bits x_1, x_2, \ldots, x_n and then calls T to solve the rest of the problem. This establishes that $\Sigma_2^{\text{SAT}} \in \text{NP}$. But since $NP = P$, $\Sigma_2^{\text{SAT}} \in P$. \qed