
22C:131 Homework 1
Due: Tuesday, 9/18

Notes: (a) Undergraduate students are required to solve the first 5 problems in the homework.
Graduate students are required to solve all problems. The problem numbers refer to problems in
the textbook, by Arora and Barak. (b) It is possible that solutions to some of these problems are
available to you via other theory of computation books or on-line lecture notes, etc. If you use
any such sources, please acknowledge these in your homework and present your solutions in your
own words. You will benefit most from the homework, if you sincerely attempt each problem on
your own first, before seeking other sources. (c) It is okay to discuss these problems with your
classmates. Just make sure that you take no written material away from these discussions and (as
in (b)) you present your solutions in your own words. When discussing homework with classmates
please be aware of guidelines on “Academic Dishonesty” as mentioned in the course syllabus.

1. For any binary string x ∈ {0, 1}+, let dec(x) denote the non-negative decimal integer equiv-
alent of x. Thus dec(000101) = 5. For x, y ∈ {0, 1}+ x ≤ y iff dec(x) ≤ dec(y).

Pick an appropriate k and design a k-tape Turing machine M that computes the function
f : {0, 1}+×{0, 1}+ → {0, 1} where f(x, y) = 1 if x ≤ y and f(x, y) = 0 otherwise. M should
run in O(|x|+ |y|) time on input (x, y).

While it is tedious to specify “low level” details of Turing machines, it is even more tedious
to read a “low level” description of a Turing machine. So in the interests of clarity and
readability, you should use Example 1.1 from the textbook to model your solution. If the
text description on Page 14 seems too verbose, use the “state diagram” approach I used
in class to describe a Turing machine. Annotate this “state diagram” with commentary on
what each transition means in the grand scheme of things. Make sure you clearly specify the
number of tapes being used and how the input appears on the input tape.

2. Problem 1.5 (Chapter 1, Page 34). As the hint in the textbook suggests, the solution to this
problem is obtained by modifying the “simulation” in the proof of Claim 1.6. You do not
have to provide as much detail as I did in class; you can mimic the level of detail in the “proof
sketch” for the claim in the textbook (Pages 17-18).

3. An instance of the Post Correspondence Problem (PCP) is a collection P of “dominos:”

P =
{[

t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk
bk

]}
.

Each ti and each bi, 1 ≤ i ≤ k is some string from a finite alphabet Γ. The collection P is
said to contain a match if there is a sequence i1, i2, . . . , i` where

ti1ti2 · · · ti` = bi1bi2 · · · bi` .

The problem is to determine if the given instance of PCP contains a match. One can think
of PCP also as a function that maps instances of PCP that contain a match into 1 and the
rest of the instances into 0. In 1946 Emil Post proved that PCP is not computable by any
Turing machine. While you don’t have to prove this here, below are a couple of problems
that might help you appreciate PCP.

1



(a) Find a match in the following instance of PCP:{[
ab

abab

]
,

[
b

a

]
,

[
aba

b

]
,

[
aa

a

]}
.

Here you can think of the alphabet Γ as {a, b}.
(b) Show that if the alphabet Γ is restricted to be {1}, then PCP is computable. You

do not have to describe a Turing machine for this proof; a clearly stated algorithm in
pseudocode with comments will suffice.

4. We say that a Turing machine M accepts a string w ∈ {0, 1}∗ if on input w, M halts and
outputs 1. A Turing machine M is said to have property R if whenever M accepts w it
accepts wR. (Note: wR denotes the string obtained by reversing string w; e.g., (011)R is
110.) Define a function R : {0, 1}∗ → {0, 1} as follows: R(α) = 1 if Mα has property R and
R(α) = 0 otherwise. Prove that the function R is uncomputable.

5. Define a function B : {0, 1}∗ × {0, 1}∗ → {0, 1} as follows: B(α, x) = 1 if Mα writes a non-
blank symbol onto its output tape at some point over the course of its computation with
input x; B(α, x) = 0 otherwise. Prove that the function B is uncomputable.

6. Problem 1.9 (Chapter 1, Page 35). A “proof sketch” of the type you see in the textbook will
suffice for this problem.

7. Problem 1.12 (Chapter 1, Page 35).
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