
Serialization Copyright 2007 by Ken Slonneger 1

Serialization

A Java object normally expires when the program that
created it terminates. Since no variable refers to it, the
garbage collector reclaims its storage.

Problem: Want to make an object be persistent so that
it can be saved between program executions.

A Possible Solution
If all of the instance variables (fields) in the object are of
primitive types or Strings, we can use

• Methods from DataOutputStream (writeInt(), writeDouble(),
writeUTF(), etc.) to store the object.

• Methods from DataInputStream (readInt(), readDouble(),
readUTF(), etc.) to restore the object.

Difficulties
1. What if objects contain arrays of varying sizes?

2. What if objects belong to various subclasses of some
class so that different objects have different sets of fields
(consider subclasses of Employee)?

3. What if instance variables are references to other
objects (composition), which have references to still
other objects, and so on?

2 Copyright 2007 by Ken Slonneger Serialization

Imagine a graph of objects that lead from the object to
be saved.

The entire graph must be saved and restored.

We need a byte-coded representation of objects that can be
stored in a file external to Java programs, so that the file can
be read later and the objects can be reconstructed.

Serialization provides a mechanism for saving and restoring
objects.

Serialization
Serializing an object means to code it as an ordered series
of bytes in such a way that it can be rebuilt (really a copy)
from that byte stream.
The serialization mechanism needs to store enough information
so that the original object can be recreated including all objects
to which it refers (the object graph).

Java has classes (in the java.io package) that allow the creation
of streams for object serialization and methods that write to and
read from these streams.

Serialization Copyright 2007 by Ken Slonneger 3

Only an object of a class that implements the empty interface
java.io.Serializable or a subclass of such a class can be
serialized.

What is Saved
• The class of the object.
• The class signature of the object.
• All instance variables not declared transient.
• Objects referred to by non-transient instance variables.

If a duplicate object occurs when traversing the graph of
references, only one copy is saved, but references are coded
so that the duplicate links can be restored.

Uses of Serialization
• Means to make objects persistent.
• Means to communicate objects over a network.
• Means to make a copy of an object.

Saving an Object (an array of dominoes)
1. Open a file and create an ObjectOutputStream object.

ObjectOutputStream save =
new ObjectOutputStream(

new FileOutputStream("datafile"));

2. Make Domino serializable:
class Domino implements Serializable

3. Write an object to the stream using writeObject().
Domino [] da = new Domino [55];
// Create a set of 55 Domino’s and place them in array.

4 Copyright 2007 by Ken Slonneger Serialization

save.writeObject(da); // Save object (the array)
save.flush(); // Empty output buffer

Restoring the Object
1. Open a file and create an ObjectInputStream object.

ObjectInputStream restore =
new ObjectInputStream(

new FileInputStream("datafile"));
2. Read the object from the stream using readObject and

then cast it to its appropriate type.

Domino [] newDa;
// Restore the object:

newDa = (Domino [])restore.readObject();
or

Object ob = restore.readObject();

When an object is retrieved from a stream, it is validated to
ensure that it can be rebuilt as the intended object.
Validation may fail if the class definition of the object has
changed.

Conditions
• A class whose objects are to be saved must implement

interface Serializable, with no methods, or the Externalizable
interface, with two methods.

• The first superclass of the class (maybe Object) that is not
serializable must have a no-parameter constructor.

• The class must be visible at the point of serialization.
The implements clause acts as a tag indicating the possibility
of serializing the objects of the class.

Serialization Copyright 2007 by Ken Slonneger 5

Main Serialization Methods

Saving Objects
public ObjectOutputStream(OutputStream out)

throws IOException
Special Exceptions:

 SecurityException
untrusted subclass illegally overrides security-
sensitive methods

public final void writeObject(Object obj)
throws IOException

Special Exceptions:
 InvalidClassException

Something is wrong with a class used by serialization
(contains unknown datatypes or no default constructor).

 NotSerializableException
Some object to be serialized does not implement the
Serializable interface.

public void flush() throws IOException
Writes any buffered output bytes and flushes through to the
underlying stream.

public void close() throws IOException

Restoring Objects
public ObjectInputStream(InputStream in)

throws IOException, SecurityException
Special Exceptions:

 StreamCorruptedException
stream header is incorrect

6 Copyright 2007 by Ken Slonneger Serialization

 SecurityException
untrusted subclass illegally overrides security-
sensitive methods

public final Object readObject()
throws IOException,

ClassNotFoundException
Special Exceptions:

ClassNotFoundException // not an IOException
Class of serialized object cannot be found.

InvalidClassException
Something is wrong with a class used for
serialization (probably a definition change).

StreamCorruptedException
Control information in stream violates
internal consistency checks.

OptionalDataException
Primitive data was found in the stream
instead of objects.

public void close() throws IOException

Primitive Data
ObjectOutputStream and ObjectInputStream also implement
the methods for writing and reading primitive data and Strings
from the interfaces DataOutput and DataInput, for example:

writeBoolean readBoolean
writeChar readChar
writeInt readInt
writeDouble readDouble
writeUTF readUTF

Serialization Copyright 2007 by Ken Slonneger 7

Some Classes that Implement Serializable
String StringBuffer Calendar Date
Character Boolean Number Class
Point Component Color Font
Throwable InetAddress URL ArrayList
LinkedList HashSet TreeSet HashMap

Note: No methods or class variables are saved when
an object is serialized.
A class knows which methods and static data
are defined in it.

Drawing Shapes Example

Create a surface to draw shapes on, so that the current set
of drawings can be saved in a file and restored later.
Use Swing Set graphics.

Components in the Program
• JPanel acting as a drawing surface.
• JComboBox object that allows the user to pick a shape

(rectangle, oval, or rounded rectangle).
• Radio buttons to choose between an outline shape or

a filled shape.
• Save button that causes the current drawings to be

written to a file.
• Restore button that recalls the saved drawings.
• Clear button that erases the drawing surface.

8 Copyright 2007 by Ken Slonneger Serialization

Shapes
The shapes will be objects that are each responsible for
drawing themselves on the surface.

The three shapes will be instances of three concrete
classes that extend an abstract class called Shape.

The state of the drawing surface is kept as a list of the
shapes that have been drawn on it.

A shape object is determined by the point at its upper left
corner, its width and height, and whether
it is filled or not.

Serialization Copyright 2007 by Ken Slonneger 9

abstract class Shape implements Serializable
{

protected Point spot;
protected int width, height;
protected boolean isFilled;

abstract void draw(Graphics g);
}

Each of the concrete classes provides an implementation for the
abstract method.

class Rectangle extends Shape
{

Rectangle(Point p, int w, int h, boolean fill)
{ spot = p; width = w; height = h; isFilled = fill; }

void draw(Graphics g)
{

g.setColor(Color.red);
if (isFilled)

g.fillRect(spot.x, spot.y, width, height);
else

g.drawRect(spot.x, spot.y, width, height);
}

}

class Oval extends Shape
{

Oval(Point p, int w, int h, boolean fill)
{ spot = p; width = w; height = h; isFilled = fill; }

void draw(Graphics g)
{

g.setColor(Color.blue);

10 Copyright 2007 by Ken Slonneger Serialization

if (isFilled)
g.fillOval(spot.x, spot.y, width, height);

else
g.drawOval(spot.x, spot.y, width, height);

}
}

class RoundRect extends Shape
{

RoundRect(Point p, int w, int h, boolean fill)
{ spot = p; width = w; height = h; isFilled = fill; }

void draw(Graphics g)
{

g.setColor(Color.yellow);
if (isFilled)

g.fillRoundRect(spot.x, spot.y, width, height, 20, 20);
else

g.drawRoundRect(spot.x, spot.y, width, height, 20, 20);
}

}

Event Handling

Window closing and mouse clicks will be handled by inner
classes inside of the main class.

The JComboBox and the radio buttons will be handled by
having the main class implement ItemListener.

The three single buttons (Clear, Save, and Restore) will
be handled by having the class implement ActionListener.

Serialization Copyright 2007 by Ken Slonneger 11

Structure of the Main Class

public class MakeShapes extends JFrame
implements ActionListener, ItemListener

{
// Instance and class variables
public static void main(String [] args) { … }
MakeShapes() { … }
public void itemStateChanged(ItemEvent e)
{ … }
public void actionPerformed(ActionEvent e)
{ … }

// Inner Classes

class WindowHandler extends WindowAdapter
{ … }

class DrawPanel extends JPanel
{

DrawPanel() { … }

public void paintComponent(Graphics g)
{ … }

class MouseHandler extends MouseAdapter
{ … }

}
}

12 Copyright 2007 by Ken Slonneger Serialization

Header and Fields in Main Class

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.swing.*;

public class MakeShapes extends JFrame
implements ActionListener, ItemListener

{
private static String fileName; // external file
private java.util.List shapeList;

private JComboBox shape;
private JRadioButton outline, filled;
private JButton clear, save, restore;

private JPanel drawPanel;

private String currentShape = "Rectangle";
private boolean isFilled = false;

:

The default shape is an outline rectangle.

These parameters can be changed using the shape JComboBox
and the radio buttons.

Constructor for the Frame
Constructor builds the GUI interface and registers some event
handlers with appropriate components.

Serialization Copyright 2007 by Ken Slonneger 13

MakeShapes()
{

setTitle("Make Shapes");
shapeList = new ArrayList();

addWindowListener(new WindowHandler());

Container cp = getContentPane();
setBackground(Color.lightGray);

JPanel p1 = new JPanel();
p1.setBackground(Color.gray);
p1.add(new Label("Shape"));
shape = new JComboBox();
shape.addItem("Rectangle");
shape.addItem("Oval");
shape.addItem("Rounded Rectangle");
p1.add(shape);
shape.addItemListener(this);

ButtonGroup bg = new ButtonGroup();
outline = new JRadioButton("Outline", true);
p1.add(outline);
outline.addItemListener(this);
bg.add(outline);

filled = new JRadioButton("Filled", false);
p1.add(filled);
filled.addItemListener(this);
bg.add(filled);
cp.add(p1, "North");

drawPanel = new DrawPanel();
cp.add(drawPanel, "Center");

14 Copyright 2007 by Ken Slonneger Serialization

JPanel p2 = new JPanel();
p2.setBackground(Color.gray);
clear = new JButton("Clear");
clear.addActionListener(this);
p2.add(clear);
save = new JButton("Save");
save.addActionListener(this);
p2.add(save);
restore = new JButton("Restore");
restore.addActionListener(this);
p2.add(restore);
cp.add(p2, "South");

}

Main Method

The main method instantiates a MakeShapes frame, sets its size
and visibility, and provides a name for the external file that will be
used for serialization.
As an extension to the program, the user could be asked to
provide a name for the file.

public static void main(String [] args)
{

MakeShapes ms = new MakeShapes();
ms.setSize(500, 400);
ms.setVisible(true);
fileName = "SavedShapes";

}

Serialization Copyright 2007 by Ken Slonneger 15

Inner Class for Window Closing

class WindowHandler extends WindowAdapter
{

public void windowClosing(WindowEvent evt)
{ System.exit(0); }

}

DrawPanel
Contains the overriden paintComponent method, which draws
each of the shapes in the list by calling their draw methods.
Note the application of dynamic binding
This inner class contains its own inner class, the mouse event
handler.

class DrawPanel extends JPanel
{

private Point pointA, pointB;
DrawPanel()
{

addMouseListener(new MouseHandler());
}
public void paintComponent(Graphics g)
{

super.paintComponent(g);
Iterator it = shapeList.iterator();
while (it.hasNext())
{

Shape s = (Shape)it.next();
s.draw(g);

}
}

16 Copyright 2007 by Ken Slonneger Serialization

Mouse Clicks (inside DrawPanel)

class MouseHandler extends MouseAdapter
{

public void mousePressed(MouseEvent e)
{

pointA = new Point(e.getX(), e.getY());
}

public void mouseReleased(MouseEvent e)
{

pointB = new Point(e.getX(), e.getY());
int x = Math.min(pointA.x, pointB.x);
int y = Math.min(pointA.y, pointB.y);
int w = Math.abs(pointA.x - pointB.x);
int h = Math.abs(pointA.y - pointB.y);
Shape newShape;
if (currentShape.equals("Rectangle"))

newShape =
new Rectangle(new Point(x,y), w, h, isFilled);

else if (currentShape.equals("Oval"))
newShape =

new Oval(new Point(x,y), w, h, isFilled);
else

newShape =
new RoundRect(new Point(x,y),w,h,isFilled);

shapeList.add(newShape);
drawPanel.repaint();

}
}

Serialization Copyright 2007 by Ken Slonneger 17

JComboBox and Radio Button Handling
Methods in MakeShapes

public void itemStateChanged(ItemEvent e)
{

if (e.getSource() == outline)
isFilled = false;

else if (e.getSource() == filled)
isFilled = true;

if (e.getSource() == shape)
 currentShape = (String)e.getItem();

}

Button Handling

Clear Button

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == clear)
{

shapeList.clear();
drawPanel.repaint();

}

We shown two ways of saving the list of Shapes.
1. Object by object.
2. Entire ArrayList at once.

18 Copyright 2007 by Ken Slonneger Serialization

Save Button (1)

else if (e.getSource() == save)
{

try
{ FileOutputStream fos =

new FileOutputStream(fileName);
ObjectOutputStream oos =

new ObjectOutputStream(fos);

oos.writeInt(shapeList.size());

for (int k=0; k<shapeList.size(); k++)
oos.writeObject(shapeList.get(k));

oos.close(); // also flushes
}
catch (IOException ex)
{

System.out.println("Trouble writing list");
}

}

Restore Button (1)

else if (e.getSource() == restore)
{

try
{ FileInputStream fis =

 new FileInputStream(fileName);
ObjectInputStream ois =

new ObjectInputStream(fis);
int len = ois.readInt();
shapeList.clear();

Serialization Copyright 2007 by Ken Slonneger 19

for (int k=0; k<len; k++)
{

Object newShape = ois.readObject();
shapeList.add(newShape);

}

ois.close();

drawPanel.repaint(); // redraw the surface
}
catch (Exception ex)
{

System.out.println("Trouble reading list");
}

Save Button (2)

else if (e.getSource() == save)
{

try
{ ObjectOutputStream oos =

new ObjectOutputStream(
new FileOutputStream(fileName));

oos.writeObject(shapeList);
oos.close();

}
catch (IOException ex)
{

System.out.println("Trouble writing list");
}

}

20 Copyright 2007 by Ken Slonneger Serialization

Restore Button (2)

else if (e.getSource() == restore)
{

try
{ ObjectInputStream ois =

new ObjectInputStream(
new FileInputStream(fileName));

shapeList = (java.util.List)ois.readObject();
ois.close();
drawPanel.repaint();

}
catch (Exception ex)
{

System.out.println("Trouble reading list");
}

}

MouseMotion
The next page shows an attempt to have the shapes
drawn as the mouse is moved.
It works fairly well with Swing.

Add one line to the constructor for DrawPanel:
addMouseListener(new MotionHandler());

and put the next class inside DrawPanel.

Serialization Copyright 2007 by Ken Slonneger 21

class MotionHandler extends MouseMotionAdapter
{

Shape prevShape;
public void mouseDragged(MouseEvent e)
{

pointB = new Point(e.getX(), e.getY());
int x = Math.min(pointA.x, pointB.x);
int y = Math.min(pointA.y, pointB.y);
int w = Math.abs(pointA.x - pointB.x);
int h = Math.abs(pointA.y - pointB.y);

Shape newShape;
if (currentShape.equals("Rectangle"))

newShape =
new Rectangle(new Point(x,y),w,h,isFilled);

else if (currentShape.equals("Oval"))
newShape =

new Oval(new Point(x,y), w, h, isFilled);
else

newShape =
new RoundRect(new Point(x,y),w,h,isFilled);

shapeList.remove(prevShape);
shapeList.add(newShape);
drawPanel.repaint();
prevShape = newShape;

}
}

22 Copyright 2007 by Ken Slonneger Serialization

Class Versioning
What happens if the definition of a class has been altered
between the time an object was serialized and is then
deserialized?

Some changes have little or no effect on an object of the class:
• class variables
• class methods
• body of instance methods
• addition of an instance variable (use default value)

Some changes prevent the correct restoration of a
previously serialized object.

Incompatible Changes
• name of the class
• type of an instance variable
• removing of an instance variable, which includes

changing its name
making it static or transient

• superclass of the class
• other changes dealing with readObject, writeObject,

and changes between Serializable and Externalizable.

Version ID
To avoid incompatible changes, each class has
a version ID that is included, along with its fully qualified
name, with each serialized object of the class.

This number is known as the stream unique identifier (SUID).

Serialization Copyright 2007 by Ken Slonneger 23

The SUID is a hash value of type long whose computation
depends on the signature of the class members that are neither
static nor transient.

The value can be set explicitly by giving a value to the static
final field serialVersionUID.

The JDK comes with a utility command that provides the version
ID of a class:

% serialver Domino

Domino: static final long
serialVersionUID = -1744580429045726511L;

InvalidClassException
If an attempt is made to deserialize an object whose stored
value of serialVersionUID disagrees with the value belonging to
the current version of the class, an InvalidClassException is
thrown.

Suppose we want to alter a class definition in a way that will have
no substantial effect on the deserialization process but the
version ID change prevents deserialization.

Solution: Define serialVersionUID explicitly in the class
thereby ignoring the Java versioning
mechanism.

If we define serialVersionUID on our own,
we take complete responsibility for version compatibility.

24 Copyright 2007 by Ken Slonneger Serialization

Example: SaveDominoes

The SaveDominoes class provides a way to add dominoes to a
persistent List, which is serialized on exit from the main method.

Each time we start up the main method, an attempt is made to
restore the previously serialized list of dominoes.

import java.io.*;
import java.util.*;

public class SaveDominoes
{

private static String fileName = "DominoFile";
private static List doms;

public static void main(String [] args)
throws IOException, ClassNotFoundException

{
doms = thawDominoes();

BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

while (true)
{

System.out.print("Enter p to print dominoes, "
+ "a to add a domino, q to quit: ");

char ch = in.readLine().charAt(0);

switch (ch)
{

case 'p':
for (int k = 0; k < doms.size(); k++)

System.out.println(doms.get(k));

Serialization Copyright 2007 by Ken Slonneger 25

break;

case 'a':
System.out.println("Enter domino as" +

 "integers on two lines:");
int v1, v2;
v1 = Integer.parseInt(in.readLine().trim());
v2 = Integer.parseInt(in.readLine().trim());
doms.add (new Domino(v1,v2,true));
break;

case 'q':
freezeDominoes();
return;

}
}

}

private static List thawDominoes()
throws IOException, ClassNotFoundException

{
try
{ FileInputStream fis = new FileInputStream(fileName);

ObjectInputStream objectIn =
new ObjectInputStream(fis);

List result = (List)objectIn.readObject();
objectIn.close();
System.out.println("Thawed from file " + fileName);
return result;

}
catch (FileNotFoundException ex)
{

System.out.println("New file");

return new ArrayList();

26 Copyright 2007 by Ken Slonneger Serialization

}
}

private static void freezeDominoes() throws IOException
{

FileOutputStream fos =
new FileOutputStream(fileName);

ObjectOutputStream objectOut =
new ObjectOutputStream(fos);

objectOut.writeObject(doms);
objectOut.close();
System.out.println("Frozen to file " + fileName);

}
}

Domino Class

class Domino implements java.io.Serializable
{

private int spots1, spots2;
private boolean faceUp;

static final int MAXDOTS = 9;
private static int numDominoes=0;

Domino(int v1, int v2, boolean up)
{ if (0<=v1 && v1<=MAXDOTS) spots1 = v1;

else spots1 = 0;
if (0<=v2 && v2<=MAXDOTS) spots2 = v2;
else spots2 = 0;
faceUp = up; numDominoes++;

}

Domino()
{ this(0,0,false); }

Serialization Copyright 2007 by Ken Slonneger 27

Domino(boolean up)
{ spots1 =
 (int)((MAXDOTS+1)*Math.random());

spots2 =
 (int)((MAXDOTS+1)*Math.random());

faceUp = up; numDominoes++;
}

int getHigh()
{ if (spots1>= spots2) return spots1;

else return spots2; }

int getLow()
{ if (spots1<= spots2) return spots1;

else return spots2; }

public String toString()
{ String orient = faceUp ? "UP" : "DOWN";

return "<" + getLow() + ", " + getHigh() + "> "
+ orient;

}

void flip()
{ faceUp = ! faceUp; }

boolean matches(Domino otherDomino)
{ int a = otherDomino.getHigh();

int b = otherDomino.getHigh();
int x = getHigh();
int y = getLow();
return a==x || a==y || b==x || b==y;

}

static int getNumber()
{ return numDominoes; }

}

28 Copyright 2007 by Ken Slonneger Serialization

Sample Output

% java SaveDominoes
New file
Enter p to print dominoes, a to add domino, q to quit: p
Enter p to print dominoes, a to add domino, q to quit: a
Enter domino as integers on two lines:
3
6
Enter p to print dominoes, a to add domino, q to quit: a
Enter domino as integers on two lines:
7
2
Enter p to print dominoes, a to add domino, q to quit: p
<3, 6> UP
<2, 7> UP
Enter p to print dominoes, a to add domino, q to quit: q
Frozen to file DominoFile

% java SaveDominoes
Thawed from file DominoFile
Enter p to print dominoes, a to add domino, q to quit: a
Enter domino as integers on two lines:
0
1
Enter p to print dominoes, a to add domino, q to quit: p
<3, 6> UP
<2, 7> UP
<0, 1> UP
Enter p to print dominoes, a to add domino, q to quit: q
Frozen to file DominoFile

Serialization Copyright 2007 by Ken Slonneger 29

Changing Domino
Now comment out the flip() instance method from class
Domino. This change has no direct effect on the Domino
objects, but note result of executing SaveDominoes
with the new version of Domino.

% serialver Domino (without flip)
Domino: static final long

serialVersionUID = 3293916970258702029L;

% java SaveDominoes
java.io.InvalidClassException: Domino;
Local class not compatible:

stream classdesc serialVersionUID=-1744580429045726511
local class serialVersionUID=3293916970258702029

at java.io.ObjectStreamClass.setClass(Compiled Code)
at java.io.ObjectInputStream.inputClassDescriptor(

ObjectInputStream.java)
at java.io.ObjectInputStream.readObject(Compiled Code)
at java.io.ObjectInputStream.readObject(Compiled Code)
at java.io.ObjectInputStream.inputObject(Compiled Code)
at java.io.ObjectInputStream.readObject(Compiled Code)
at java.io.ObjectInputStream.inputArray(Compiled Code)
at java.io.ObjectInputStream.readObject(Compiled Code)
at java.io.ObjectInputStream.defaultReadObject(

ObjectInputStream.java)
at java.io.ObjectInputStream.inputObject(Compiled Code)
at java.io.ObjectInputStream.readObject(Compiled Code)
at java.io.ObjectInputStream.readObject(Compiled Code)
at SaveDominoes.thawDominoes(SaveDominoes.java:21)
at SaveDominoes.<init>(SaveDominoes.java:12)
at SaveDominoes.main(SaveDominoes.java:75)

30 Copyright 2007 by Ken Slonneger Serialization

Taking Control

The InvalidClassException can be avoided by taking
the following steps:

1. Add a line to the Domino class
static final long serialVersionUID = 1999L;

2. Recompile Domino.

3. Remove the file DominoFile from the current directory.

4. Execute SaveDominoes and create a new domino List.

5. Avoid calling flip on the deserialized dominoes.

Now the program works correctly whether flip is in the class
or not.

Adding instance variables to a class will also change the
version ID without invalidating the serialized objects.

When such an object is deserialized, the new instance
variables are created with their default values.

