
Chapter 10 1

Domain Theory

Recursive Definitions

f(n) = if n=0 then 1 else f(n–1)

g(n) = if n=0 then 1 else g(n+1)

or

define f = &n . (if (zerop n) 1 (f (sub n 1)))

define g = &n . (if (zerop n) 1 (g (succ n)))

A function satisfies a recursive definition iff
it is a solution to an equation:

f = &n . (if (zerop n) 1 (f (sub n 1)))

g = &n . (if (zerop n) 1 (g (succ n)))

Similar to solving a mathematical equation:

x = x2 – 4x + 6.

Chapter 10 2

Other Recursive Definitions

Concrete Syntax

<cmd> ::= if <boolean expr>
then <cmd seq> end if

<cmd seq> ::= <cmd>
| <cmd> ; <cmd seq>

Lists of Numbers

List = {nil} ! (N x List)
where nil represents the empty list

Model for Pure Lambda Calculus

V = set of variables

D = V ! (D " D)

Problem with Cardinality

|D"D| ! |D| < |P(D)| ! |D"D|

Modeling Nontermination

Chapter 10 3

Domains

Sets with a lattice-like structure.

Each domain contains a bottom element #
that is “less than” all other elements.

For domains of functions, bottom represents
a computation that fails to complete normally.

Partial Order $ on a Set S

A relation that is

• reflexive

• transitive

• antisymmetric

Chapter 10 4

Definitions

b%S is a lower bound of a subset A of S
if b$x for all x%A.

u%S is an upper bound of a subset A of S
if x$u for all x%A.

A least upper bound of A, lub A, is
an upper bound of A that is less than
or equal every upper bound of A.

Example: Divides relation on { 1,2,4,5,8,10,20 }

Hasse diagram

1

2 5

4 10

208
lub { 2, 5 } =

lub { 2, 4, 5, 10 } =

lub { 1, 2, 4 } =

lub { 8, 10 } =

lub { 20 } =

Chapter 10 5

An ascending chain in a partially ordered set
S is a sequence of elements { x1, x2, x3, x4, … }
with the property

x1 $ x2 $ x3 $ x4 $ ….

A complete partial order (cpo) on a set S
is a partial order $ with the two properties

a) There is an element #%S with # $ x
for all x%S.

b) Every ascending chain in S has a least
upper bound in S.

On domains, $ is thought of as approximates
or is less defined than or equal to.

Any finite set with a partial order and
a bottom element # is a cpo. Why?

Chapter 10 6

Elementary Domains

Natural numbers and Boolean values with
a discrete partial order:

for x,y%S, x $ y iff x = y or x = #.

Elementary domains correspond to “answers”,
the results produced by programs.

true false

!

0 1 2 3 …4

!

Proper and Improper values.

Also called flat domains.

Chapter 10 7

Product Domains

If A with ordering $A and B with ordering $B

are complete partial orders, the product
domain of A and B is AxB with the ordering
$AxB where

AxB = {<a,b> | a%A and b%B}, and
<a,b> $AxB <c,d> iff a $A c and b $ B d.

Thm: $AxB is a partial order on AxB.

Proof: Exercise

Thm: $AxB is a complete partial order on AxB.

Proof: #AxB = <#A,#B> acts as bottom for AxB,
since #A $A a and #B $ B b for a%A and b%B.

If <a1,b1> $ <a2,b2> $ <a3,b3> $ … is an

ascending chain in AxB,

then a1 $A a2 $A a3 $A … is a chain in A

with least upper bound, lub {ai|i"1}%A, and

b1 $B b2 $B b3 $B … is a chain in B with

least upper bound, lub {bi|i"1}%B.

Therefore, <lub {ai|i"1},lub {bi|i"1}>%AxB is

the least upper bound for original chain. !
Chapter 10 8

Example

Level = {#L,undergraduate,graduate,nondegree}

and

Gender = {#G, female, male}

Gender x Level

<f,u> <f,g> <f,n>

Imagine two processes to determine level and
gender of a student.

Chapter 10 9

Projection Functions

first : AxB"A
defined by first <a,b> = a for any <a,b>%AxB

and

second : AxB"B
defined by second <a,b> = b for any

<a,b>%AxB

Generalize to arbitrary product domains:

D1 x D2 x … x Dn

Application: Calculator Semantics

evaluate [[=]] (a,op,d,m) = (a, nop, op(a,d), m)

is a more readable translation of

evaluate [[=]] st =
(first(st), nop,

second(st)(first(st),third(st)), fourth(st)).

Chapter 10 10

Sum Domains

If A with ordering $A and B with ordering $B

are complete partial orders, the sum domain
of A and B is A+B with the ordering $A+B

where

A+B = {<a,1> | a%A}!{<b,2> | b%B}!{#A+B},

<a,1> $A+B <c,1> if a $A c,

<b,2> $A+B <d,2> if b $B d,

#A+B $A+B <a,1> for each a%A,

#A+B $A+B <b,2> for each b%B, and

#A+B $A+B #A+B.

Thm: $A+B is a complete partial order on A+B.

Proof: #A+B $ x for any x%A+B by definition.
An ascending chain x1 $ x2 $ x3 $ … in A+B
may repeat #A+B forever or eventually climb into
either Ax{1} or Bx{2}. In first case, least upper
bound will be #A+B, and in the other two cases
the least upper bound will exist in A or B. !

Chapter 10 11

Functions on Sum Domains

Let S = A+B.

1. Injection (creation):

inS : A"S is defined for a%A

as inS a = <a,1>%S

inS : B"S is defined for b%B

as inS b = <b,2>%S

2. Projection (selection):

outA : S"A is defined for s%S as
outA s = a%A if s=<a,1>, and
outA s = #A%A if s=<b,2> or s=#S.

outB : S"B is defined for s%S as
outB s = b%B if s=<b,2>, and
outB s = #B%B if s=<a,1> or s=#S.

Chapter 10 12

3. Inspection (testing):
Recall T = {true, false, #T}.

isA : S"T is defined for s%S as
isA s iff there exists a%A with s=<a,1>.

isB : S"T is defined for s%S as
isB s iff there exists b%B with s=<b,2>.

In both cases, #S is mapped to #T.

Signature Diagram

S = A + B

A

B

T

outA

inS

isB

outB

inS

isA

Observe that inS is an overloaded function.

Chapter 10 13

Storable Values for Wren

true false

!Boolean

… -1 0 1 …2

!Integer

!SV

Functions for SV

inSV : Integer " SV

inSV : Boolean " SV

outInteger : SV " Integer

isInteger : SV " T

outBoolean : SV " Boolean

isBoolean : SV " T

Chapter 10 14

SV = Integer + Boolean =
{<n,1>| n%Integer}!{<b,2>| b%Boolean}!{#SV}

or

SV = int(Integer) + bool(Boolean) =
{int(n)| n%Integer}!{bool(b)| b%Boolean}!{#SV}

Injection function

inSV : Integer " SV where inSV n = int(n).

The tags (constructors), int and bool, take the
place of the overloaded injection function, inSV.

int : Integer " SV
bool : Boolean " SV

Projection function

outInteger : SV " Integer
 where outInteger int(n) = n

outInteger bool(b) = #
outInteger #SV = #.

Chapter 10 15

Inspection handled by pattern matching

execute [[if E then C]] sto =
if p then execute [[C]] sto else sto

where bool(p) = evaluate [[E]] sto,

stands for

execute [[if E then C]] sto =
if isBoolean(val)

then if outBoolean(val)
then execute [[C]] sto
else sto

else #
where val = evaluate [[E]] sto

Generalizations

Finite sums: D1 + D2 + D3 + … + Dn

Infinite sums: D1 + D2 + D3 + … = {<d,i> | d%Di}

Domain of finite Sequences:

D* = { nil } + D + D2 + D3 + D4 + …

where nil represents the empty sequence.

Chapter 10 16

Functions on D*

Injection: inD* : Dk"D*

Projection: outDk : D*"Dk

Functions on Lists:

Let L%D* and e%D.

Then L=<d,k> for d%Dk for some k"0

where D0 = { nil }.

1. head : D*"D where

head (L) = first (outDk(L)) if k>0, and
head (<nil,0>) = #.

2. tail : D*"D* where

tail (L) = inD*(<2nd (outDk(L)),
3rd (outDk(L)), …,

kth (outDk(L))>)
if k>0, and

tail (<nil,0>) = #.

Chapter 10 17

3. null : D*"T where
null (<nil,0>) = true, and

null (L) = false if L = <d,k> with k>0.

Therefore, null (L) = isD0(L)

4. prefix : DxD*"D* where

prefix (e,L) = inD*(<e,1st (outDk(L)),
2nd (outDk(L)),…,

kth (outDk(L))>)

5. affix : D*xD"D* where

affix (L,e) = inD*(<1st (outDk(L)),
2nd (outDk(L)), …,

kth (outDk(L)),e>)

Each of these five functions map
bottom to bottom.

The binary functions prefix and affix
produce # if either argument is bottom.

Chapter 10 18

Sets of Functions

A function from a set A to a set B is total
if f(x)%B is defined for every x%A.

If A with ordering $A and B with ordering $B

are complete partial orders, define Fun(A,B) to
be the set of all total functions from A to B.

Define $ on Fun(A,B) as follows:

For f,g%Fun(A,B),

f $ g if f(x) $B g(x) for all x%A.

Lemma: $ is a partial order on Fun(A,B).

Proof: Follow the definition to show reflexive,
transitive, and antisymmetric.

See text for complete proof.

Chapter 10 19

Thm: $ is a complete partial order on Fun(A,B).

Proof: Define bottom for Fun(A,B) as the
function #(x) = #B for all x%A.
Since #(x) = #B $B f(x) for all x%A

and f%Fun(A,B),
$ f for all f%Fun(A,B).

Let f1 $ f2 $ f3 $ … be an ascending chain
in Fun(A,B).

Then for any x%A, f1(x) $B f2(x) $B f3(x) $B …
is a chain in B, which has a least upper bound,
yx%B. Note that yx is lub {fi(x) |i"1}.

Define the function F(x) = yx for each x%A.

F serves as a least upper bound for the original
chain. Set lub {fi|i"1} = F. !

Fun(A,B) contains some strange functions.

Consider F % Fun(N"N,N"N) defined by

F g = &n . if g(n)=# then 0 else 1,

for g%N"N

Chapter 10 20

Restrictions on Fun(A,B)

Monotonic

A function f in Fun(A,B) is monotonic if
x $A y implies f(x) $B f(y) for all x,y%A.

If $ means “approximates”, then when y has at
least as much information as x, it follows that
f(y) has at least as much information as f(x).

Continous

A function f%Fun(A,B) is continuous if it
preserves least upper bounds; that is, if X = x1

$A x2 $A x3 $A … is an ascending chain in A,
then f(lubAX) = lubB{f(x) | x%X}.

Also written f(lubA{xi}) = lubB{f(xi)}

or f(lubA{xi | i"1}) = lubB{f(xi) | i"1}.

No surprises when taking the least upper
bounds (limits) of approximations

Chapter 10 21

Lemma: If f%Fun(A,B) is continuous, then it is
monotonic.

Proof: Suppose f is continuous and x $A y.
Then x $A y $A y $A y $A … is an ascending
chain in A, and since f is continuous,

f(x) $B lubB{f(x),f(y)} = f(lubA{x,y}) = f(y). !

Function Domains

Define A"B to be the set of functions in
Fun(A,B) that are (monotonic and) continuous.
This set is ordered by the relation $ from
Fun(A,B).

F % Fun(N"N,N"N) defined by
 F g = &n . if g(n)=# then 0 else 1,

for g%N"N
is not monotonic.

Proof by Counterexample:

Let g1 = &n . # and g2 = &n . 0. Then g1 $ g2.
But F(g1) = &n . 0, F(g2) = &n . 1, and functions
&n . 0 and &n . 1 are not related at all by $.

Chapter 10 22

Lemma: The relation $ restricted to A"B is a
partial order.

Proof: The properties reflexive, transitive, and
antisymmetric are inherited by a subset. !

Lub Lemma: If x1 $ x2 $ x3 $ … is an
ascending chain in a cpo A, and xi $ d%A for
each i"1, then lub {xi|i"1} $ d.

Proof: By the definition of least upper bound,
if d is a bound for the chain, the least upper
bound, lub {xi|i"1}, must be no larger than d. !

Limit Lemma: If x1 $ x2 $ x3 $ … and
y1 $ y2 $ y3 $ … are ascending chains in cpo
A, and xi $ yi for each i"1,
then lub {xi|i"1} $ lub {yi|i"1}.

Proof: For each i"1, xi $ yi $ lub {yi|i"1}.
Therefore lub {xi|i"1} $ lub {yi|i"1} by the Lub
lemma (take d = lub {yi|i"1}). !

Chapter 10 23

Thm: The relation $ on A"B is a complete
partial order.

Proof: Since $ is a partial order on A"B, two
properties need to be verified:

1. The bottom element in Fun(A,B) is also in
A"B; that is, the function #(x) = #B is
monotonic and continuous.

2. For any ascending chain in A"B, its least
upper bound, which is an element of
Fun(A,B), is also in A"B, namely it is
monotonic and continuous.

Part 1: If x $A y for some x,y%A,
then #(x) = #B = #(y), which means #(x) $B

#(y), and so # is a monotonic function.

If x1 $A x2 $A x3 $A … is an ascending chain
in A, then its image under the function # will be
the ascending chain #B $B #B $B #B $B …,
whose least upper bound is #B. Therefore,
#(lubA{xi|i"1}) = #B = lubB{#(xi)|i"1}, and # is a
continuous function.

Chapter 10 24

Part 2: Let f1 $ f2 $ f3 $ … be an ascending
chain in A"B, and let F = lub {fi|i"1} be its least
upper bound (in Fun(A,B)). Remember the de-
finition of F, F(x) = lub {fi(x)|i"1} for each x%A.
We need to show that F is monotonic and
continuous so that we know F is a member of
A"B.

Monotonic:
If x $A y, fi(x) $B fi(y) $B lub {fi(y)|i"1} for
any i since each fi is monotonic.

Therefore, F(y) = lub {fi(y)|i"1} is an upper
bound for each fi(x), and so the least upper
bound of all the fi(x) satisfies
F(x) = lub {fi(x)|i"1} $ F(y) (Lub lemma),
and F is monotonic.

Continuous: Let x1 $A x2 $A x3 $A … be an
ascending chain in A. We need to show that
F(lub {xj|j"1}) = lub {F(xj)|j"1} where

F(x) = lub {fi(x)|i"1} for each x%A.

Chapter 10 25

Note that “i” is used to index the ascending
chain of functions from A"B while “j” is used
to index the ascending chains of elements in
A and B.

So F is continuous if
F(lub {xj|j"1}) = lub {F(xj)|j"1}.

Recall these definitions and properties:

1. Each fi is continuous:
fi(lub {xj|j"1}) = lub {fi(xj)|j"1}

for each chain {xj|j"1} in A.

2. Definition of F:
F(x) = lub {fi(x)|i"1} for each x%A.

So
F(lubj{xj|j"1}) = lub {fi(lub {xj|j"1})|i"1} by 2

= lub {lub {fi(xj)|j"1}|i"1} by 1

= lub {lub {fi(xj)|i"1}|j"1} ‡

= lub {F(xj)|j"1} by 2.

Look at Figure 10.9.

Chapter 10 26

First Half

lub {lub {fi(xj)|j"1}|i"1} $ lub {lub {fi(xj)|i"1}|j"1}

For all k and j, fk(xj) $ lub {fi(xj)|i"1} by the
definition of F (the rows of Figure 10.9).

We have chains

fk(x1) $ fk(x2) $ fk(x3) $ … for each k

and lub {fi(x1)|i"1} $ lub {fi(x2)|i"1}
$ lub {fi(x3)|i"1} $ …

So for each k,
lub {fk(xj)|j"1} $ lub {lub {fi(xj)|i"1}|j"1}

by the Limit lemma.
This corresponds to the top row (remember
each fk is continuous).

Hence
lub {lub {fk(xj)|j"1}|k"1} $ lub {lub {fi(xj)|i"1}|j"1}
by the Lub lemma. Now change k to i.

Chapter 10 27

Second Half

lub {lub {fi(xj)|i"1}|j"1} $ lub {lub {fi(xj)|j"1}|i"1}

For all i and k,
fi(xk) $ fi(lub {xj|j"1}) = lub {fi(xj)|j"1} by using
the fact that each fi is monotonic and
continuous (the columns of Figure 10.9).

We have chains

f1(xk) $ f2(xk) $ f3(xk) $ … for each k

and lub {f1(xj)|j"1} $ lub {f2(xj)|j"1}
$ lub {f3(xj)|j"1} $ …

So for each k,
lub {fi(xk)|i"1} $ lub {lub {fi(xj)|j"1}|i"1} by

the Limit lemma.
This corresponds to the rightmost column.

Hence
lub {lub {fi(xk)|i"1}|k"1} $ lub {lub {fi(xj)|j"1}|i"1}
by the Lub lemma. Now change k to j.

Therefore F is continuous. !

Chapter 10 28

Example 10

Student = { #, Autry, Bates }

Level =
{ #, undergraduate, graduate, nondegree }

Fun(Student,Level) contains 64 (43) elements.

Only 19 of these functions are monotonic and
continuous.

Which of these functions are monotonic?

f = { # |"#, Autry |"nondegree, Bates |"# }

g = { # |"grad, Autry |"grad, Bates |"# }

h = { # |"grad, Autry |"grad, Bates |"grad }

Chapter 10 29

Thm: If A and B are cpos, A is a finite set, and
f%Fun(A,B) is monotonic, f is also continuous.

Proof: Let x1 $A x2 $A x3 $A … be an
ascending chain in A.

Since A is finite, for some k, xk = xk+1 =
xk+2 = ….

So the chain is a finite set, {x1, x2, x3, …, xk},
whose least upper bound is xk.

Since f is monotonic,
f(x1) $B f(x2) $B f(x3) $B … $B f(xk)

= f(xk+1) = f(xk+2) = …
is an ascending chain in B, which is also a finite
set, namely {f(x1), f(x2), f(x3), …, f(xk)}
with f(xk) as its least upper bound.

Therefore, f(lub {xi|i"1}) = f(xk) = lub {f(xi)|i"1},
and f is continuous. !

Chapter 10 30

Continuity of Functions on Domains

Thm: These functions on domains and their
analogs are continuous:
1. first : AxB"A

2. inS : A"S where S = A+B

3. outA : A+B"A

4. isA : A+B"T

Proof:
2. Let a1 $ a2 $ a3 $ … be an ascending

chain in domain A.
Observe that 1 $ 1 $ 1 $ 1 $ … is an
ascending chain in N.
Then <a1,1> $ <a2,1> $ <a3,1> $ … is
an ascending chain in S.

So inS(lub {ai|i"1}) = <lub {ai|i"1}, 1>
= <lub {ai|i"1}, lub {1|i"1}>

= lub {<ai,1> | i"1}
= lub {inS(ai) | i"1}.

Chapter 10 31

3. An ascending chain s1 $ s2 $ s3 $ … in
S = A + B may repeat #A+B forever or
eventually climb into either Ax{1} or Bx{2}.
In the first case, the least upper bound
will be #A+B,
and in the other two cases the lub will be
some a%A or some b%B.

Case 1: si = #A+B for all i"1.
Then outA(lubS{si|i"1}) = outA(#S) = #A,
and lubA{outA(si)|i"1} = lubA{#A|i"1} = #A.

Case 2:
For some k"1, si = <ai,1> for all i"k

where ai%A.

Then outA(lub {si|i"1})

= outA(<lub {ai|i"k},1>)
= lub {ai|i"k}

and lub {outA(si)|i"1} = lub {ai|i"k}.

Chapter 10 32

Case 3:
For some k"1, si = <bi,2> for all i"k

where bi%B.
Then outA(lub{si|i"1}) = outA(<lub{bi|i"k},2>)

= #A

and lub{outA(si)|i"1} = lub{#A|i"1} = #A. !

Thm: The composition of continuous functions
is continuous.

Proof: Suppose f : A " B and g : B " C are
continuous functions.
Let x1 $ x2 $ x3 $ … be an ascending chain
in A.

Then f(x1) $ f(x2) $ f(x3) $ … is an ascending
chain in B with f(lub{xi|i"1}) = lub{f(xi)|i"1} by
the continuity of f.

Since g is continuous,
g(f(x1)) $ g(f(x2)) $ g(f(x3)) $ … is an
ascending chain in C with g(lub{f(xi)|i"1}) =
lub{g(f(xi))|i"1}.

Therefore g(f(lub{xi|i"1})) = g(lub{f(xi)|i"1}) =
lub{g(f(xi))|i"1} and g ° f is continuous. !

Chapter 10 33

Fixed Point Semantics

Goal: Provide meaning for recursive definitions.

First Step: Transform partial functions into
total functions.

Example

f is a function with domain D = {0,1,2} and
codomain C = {0,1,2} defined by:

f(n) = 2/n
or

f = {<1,2>,<2,1>}.

Note that f(0) is undefined;
therefore f is a partial function.

Now extend f to make it a total function:

f = {<1,2>,<2,1>,<0,?>}.

Chapter 10 34

Add an undefined element to the codomain,
C+ = {#,0,1,2}, and for symmetry, do likewise

with the domain, D+ = {#,0,1,2}.

Define the natural extension of f by having
#D map to #C under f:

f+ = {<#,#>,<0,#>,<1,2>,<2,1>}.

Define a relationship that orders functions and
domains according to how “defined” they are,
putting a lattice-like structure on the elementary
domains:

For x,y%D+, x$y if x=# or x=y.

This relation is read “x approximates y” or
“x is less defined or equal to y”.

Chapter 10 35

Thm: Let f+ be a natural extension of a function
between two sets D and C so that f+ is a total

function from D+ to C+.
Then f+ is monotonic and continuous.

Proof: Let x1 $ x2 $ x3 $ … be an ascending

chain in the domain D+ = D!{#}.
Two possibilities for the behavior of the chain:

Case 1: xi = #D for all i"1.
Then lub{xi|i"1} = #D, and

f+(lub{xi|i"1}) = f+(#D)

= #C = lub{#C} = lub{f+(xi)|i"1}.

Case 2: xi = #D for 1!i!k and xk+1 = xk+2 = xk+3

= …, since once the terms move above bottom,
the sequence is constant in a flat domain.

Then lub{xi|i"1} = xk+1, and

f+(lub{xi|i"1}) = f+(xk+1)

= lub{#C,f+(xk+1)} = lub{f+(xi)|i"1}.

If f+ is continuous, it is also monotonic. !

Chapter 10 36

The natural extension of a function whose
domain is a Cartesian product, namely
f : D1

+xD2
+x…xDn

+"C+, has the property that

f+(x1,x2,…,xn) = #C whenever at least one xi=#.

Any function that satisfies this property
is known as a strict function.

Thm: If f+: D1
+xD2

+x…xDn
+"C+ is a natural

extension where Di
+, 1!i!n, and C+ are

elementary domains, then f+ is monotonic and
continuous.

Proof: Consider the case where n=2. Show f+ is
continuous.
Let <x1,y1> $ <x2,y2> $ <x3,y3> $ … be an

ascending chain in D1
+xD2

+. Since D1
+ and D2

+

are elementary domains, the chains {xi|i"1} and
{yi|i"1} must follow one of the two cases in the
previous proof, namely all # or eventually a

constant proper value in Di
+.

Chapter 10 37

Case 1: lub{xi|i"1} = #D1+

or lub{yi|i"1} = #D2+

(or both).

Then f+(lub{<xi,yi>|i"1})

= f+(<lub{xi|i"1},lub{yi|i"1}>) = #C+

because f+ is a natural extension and one of its
arguments is #, and

lub{f+(<xi,yi>)|i"1} = lub{#C+|i"1} = #C+.

Case 2: lub{xi|i"1} = x%D1

and lub{yi|i"1} = y%D2

Since D1
+
 and D2

+ are both elementary domains,
there is an integer k

such that xi = x and yi = y for all i"k.

So f+(lub{<xi,yi>|i"1})

= f+(<lub{xi|i"1},lub{yi|i"1}>)

= f+(<x,y>)%C+

and lub{f+(<xi,yi>)|i"1} = lub{#C+,f+(<x,y>)}

= f+(<x,y>). !

Chapter 10 38

Example

Consider the natural extension of the
conditional expression operation:

(if a b c) = if a then b else c.

The natural extension unduly restricts the
meaning of the conditional expression.

For example, we prefer that the following
expression return 0 when x=1 and y=0:

if y>0 then x/y else 0.

If we interpret the undefined operation 1/0 as #,

when x=1 and y=0,

(if+ y>0 x/y 0) = (if+ false # 0) = #

for a natural extension.

Chapter 10 39

Second Step: Give meaning to recursive
definitions.

Consider a recursively defined function f :
N"N where N = {#,0,1,2,3,…} and

f(n) = (†)

 if n=0 then 5 else if n=1 then f(n+2) else f(n-2)

Two questions:

1. What function, if any, does this equation in
f denote?

2. Does it specify more than one function?

Define a functional F by

F : (N"N)"(N"N) where

(F(f))(n) = (‡)

 if n=0 then 5 else if n=1 then f(n+2) else f(n-2)

Function application associates to the left;
omit the parentheses with multiple applications,
writing F f n for (F(f))(n).

Chapter 10 40

A function, f : N"N, satisfies the original
definition (†) if and only if it is a fixed point of
the definition of F, (‡),

F f n = f(n) for all n%N or just F f = f.

Once more:

Suppose f : D"C is a function defined
recursively by f(x) = '(x,f) for each x%D
where '(x,f) is some expression in x and f.

Furthermore, let F : (D"C)"(D"C) be the
functional defined by F f x = '(x,f).

Then

F f = f if and only if F f x = f x for all x%D
if and only if '(x,f) = f x for all x%D

which is the same as f(x) = '(x,f) for all x%D.

Using lambda calculus notation:

F f = &n . if n=0 then 5 else if n=1 then f(n+2)
else f(n-2)

or
F = &f . &n . if n=0 then 5 else if n=1 then f(n+2)

else f(n-2)

Chapter 10 41

Fixed Points in Mathematics

Function Fixed Points
g(n) = n2 – 6n 0 and 7

g(n) = n all n%N
g(n) = n + 5 none

g(n) = 2 2

Back to Functional F

The function g = &n . 5 is a fixed point of F:

F g = &n . if n=0 then 5 else if n=1 then g(n+2)
else g(n-2)

= &n . if n=0 then 5 else if n=1 then 5 else 5
= &n . 5 = g.

Problem

g = &n . 5 does not agree with the operational
behavior of the original recursive definition.

f(1) = f(3) = f(1) = … does not produce a value,
whereas g(1) = 5.

Chapter 10 42

Special Fixed Point

Of the possible fixed points of a functional,
chose the one that is “least defined” according
to $.

1. Any fixed point of F embodies the
information that can be deduced from F.

2. The least fixed point includes no more
information than what must be deduced.

Define the meaning of a recursive definition of
a function to be the “least” fixed point, with
respect to $, of the corresponding functional F.

Does a least fixed point always exist?

Notation: Define fk for each k"0 inductively:

f0(x) = x is the identity function and

fn+1(x) = f(fn(x)) for n"0.

Chapter 10 43

Thm: If D with $ is a complete partial order and
g : D"D (g is any monotonic and continuous
function on D), then g has a least fixed point
with respect to $ on D"D.

Proof: Since D is a cpo, g0(#) = # $ g(#).

Since g is monotonic, g(#) $ g(g(#)) = g2(#).

In general, since g is monotonic,
gi(#) $ gi+1(#) implies

gi+1(#) = g(gi(#)) $ g(gi+1(#)) = gi+2(#).

So by induction,
$ g(#) $ g2(#) $ g3(#) $ g4(#) $ …

is an ascending chain in D, which must have a
least upper bound u = lub{gi(#) | i"0}%D.

But g(u) = g(lub{gi(#) | i"0})

= lub{g(gi(#)) | i"0} since g is continuous

= lub{gi+1(#) | i"0}

= lub{gi(#) | i>0} = u
That is, u is a fixed point for g.

Chapter 10 44

Note that g0(#) = # has no effect on the least

upper bound of {gi(#)|i"0}.

Let v%D be another fixed point for g.

Then # $ v and g(#) $ g(v) = v, the basis step
for induction.

Suppose gi(#) $ v.

Then since g is monotonic,
gi+1(#) = g(gi(#)) $ g(v) = v, the induction step.

Therefore, by mathematical induction, gi(#) $ v
for all i"0.

So v is an upper bound for {gi(#) | i"0}.
Hence u $ v, since u is the least upper bound

for {gi(#) | i"0}. !

Corollary: Every continuous functional
F : (A"B)"(A"B), where A and B are
domains, has a least fixed point, Ffp : A"B,
which can be taken as the meaning of the
(recursive) definition corresponding to F.

Chapter 10 45

Example

Consider the functional G: (N"N)"(N"N)
where

G g n = if n=0 then 1
else if n=1 then g(3)-12

else 4n+g(n-2) (‡)

that corresponds to the recursive definition

g(n) = if n=0 then 1
else if n=1 then g(3)-12

else 4n+g(n-2) (†)

Contemplate the ascending sequence

$ G(#) $ G2(#) $ G3(#) $ G4(#) $ …

and its least upper bound.

Use the abbreviation gk = (Gk #) for k"0:

g0(n) = G0 # n = #(n)
g1(n) = G # n = G g0 n
g2(n) = G (G #) n = G g1 n

g3(n) = G3 # n = G g2 n

Now calculate a few terms in the ascending
chain

g0 $ g1 $ g2 $ g3 $ ….

Chapter 10 46

g0(n) = G0 # n = #(n) = # for n%N,
the everywhere undefined function.

g1(n) = G # n = G g0 n
= if n=0 then 1 else if n=1 then g0(3)-12

else 4n+g0(n-2)
= if n=0 then 1 else if n=1 then #(3)-12

else 4n+#(n-2)
= if n=0 then 1 else #

g2(n) = G2 # n = G g1 n
= if n=0 then 1 else if n=1 then g1(3)-12

else 4n+g1(n-2)
= if n=0 then 1 else if n=1 then #-12

else 4n+(if n-2=0 then 1 else #)
= if n=0 then 1 else if n=1 then #

else (if n=2 then 4n+1 else #)
= if n=0 then 1 else if n=1 then #

else if n=2 then 9 else #

Chapter 10 47

Note Property

a + (if b then c else d) =

= if b then a+c else a+d

g3(n) = G3 # n = G g2 n

= if n=0 then 1 else if n=1 then g2(3)-12
else 4n+g2(n-2)

= if n=0 then 1 else if n=1 then #-12
else 4n+(if n-2=0 then 1

else if n-2=1 then #
else if n-2=2 then 9 else #)

= if n=0 then 1 else if n=1 then #
else (if n=2 then 4n+1

else if n=3 then 4n+#
else if n=4 then 4n+9

else 4n+#)
= if n=0 then 1

else if n=1 then #
else if n=2 then 9

else if n=3 then #
else if n=4 then 25 else #

Chapter 10 48

g4(n) = G4 # n = G g3 n

= if n=0 then 1 else if n=1 then g3(3)-12
else 4n+g3(n-2)

= if n=0 then 1 else if n=1 then #-12
else 4n+(if n-2=0 then 1

else if n-2=1 then #
else if n-2=2 then 9

else if n-2=3 then #
else if n-2=4 then 25

else #)
= if n=0 then 1 else if n=1 then #

else (if n=2 then 4n+1
else if n=3 then 4n+#

else if n=4 then 4n+9
else if n=5 then 4n+#

else if n=6 then 4n+25
else 4n+#)

= if n=0 then 1
else if n=1 then #

else if n=2 then 9
else if n=3 then #

else if n=4 then 25
else if n=5 then #

else if n=6 then 49 else #

Chapter 10 49

A pattern seems to be developing.

Lemma: For all i"0,
gi(n) =

if n<2i then (if even(n) then (n+1)2 else #)
else #.

Proof: The proof proceeds by induction on i.

a) By the previous computations, for i = 0,
g0(n) = # =

if n<2•0 then
(if even(n) then (n+1)2 else #) else #

b) As the induction hypothesis, assume that
gi(n) =

if n<2i then
(if even(n) then (n+1)2 else #) else #,

for any arbitrary i"0.

Then gi+1(n) = G gi n
= if n=0 then 1

else if n=1 then gi(3)-12 else 4n+gi(n-2)

Chapter 10 50

= if n=0 then 1
else if n=1 then #-12

else 4n+(if n-2<2i
then (if even(n–2) then (n-1)2

else #)
else #)

= if n=0 then 1
else if n=1 then #

else (if n<2i+2
then (if even(n–2) then 4n+(n-1)2

else 4n+#) else 4n+#)
= if n=0 then 1

else if n=1 then #
else if n<2(i+1)

then (if even(n) then (n+1)2

else #) else #
= if n<2(i+1)

then (if even(n) then (n+1)2 else #)
else #

Therefore our pattern for the gi is correct. !

Chapter 10 51

The least upper bound of the ascending chain

g0 $ g1 $ g2 $ g3 $ …, where

gi(n) = if n<2i then (if even(n) then (n+1)2 else #)
else #,

must be defined (not #) for any n where some
gi is defined, and must take the value (n+1)2

there.

Hence the least upper bound is

Gfp(n) = (lub{gi | i"0}) n

= (lub{Gi # | i"0}) n

= if even(n) then (n+1)2 else # for all n%N,

and this function can be taken as the meaning
of the original recursive definition.

Note that the function h n = (n+1)2 is also a
fixed point for G.

It is more defined than Gfp.

In fact, Gfp $ h.

Chapter 10 52

fix

The procedure for computing a least fixed point
for a functional can be described as an
operator on functions F : D"D:

fix : (D"D)"D where
fix F = lub{Fi(#)|i"0} % D.

The least fixed point of the functional

F = &f . &n . if n=0 then 5 else if n=1 then f(n+2)
else f(n-2)

can then be expressed as

Ffp = fix F, an element of D = N"N.

For F : (N"N)"(N"N), fix has type

fix : ((N"N)"(N"N))"(N"N).

The fixed point operator fix provides a fixed
point for any continuous functional, namely,
the least defined function with this fixed point
property.

Fixed Point Identity: F(fix F) = fix F.

Chapter 10 53

Continuous Functionals

Lemma: A constant function f : D"C, where
f(x) = k for some fixed k%C and for all x%D, is
continuous given either of the two extensions:

a) The natural extension where f(#D) = #C.

b) The “unnatural” extension where f(#D) = k.

Lemma: An identity function f : D"D, where
f(x) = x for all x in a domain D, is continuous.

Proof: If x1 $ x2 $ x3 $ … is an ascending chain
in D, it follows that

 f(lub{xi|i"1}) = lub{xi|i"1} = lub{f(xi)|i"1}. !

Conditional Expression Function:

Natural extension of “if” is too restrictive.

Lazy if

if(a,b,c) = if a then b else c.
where if : TxDxD"D for some domain D
and T = { #, true, false }

Chapter 10 54

(if true then b else c) = b for any b,c%D
(if false then b else c) = c for any b,c%D
(if # then b else c) = #D for any b,c%D

Lemma: The uncurried “if” function as defined
above is continuous.

Proof: Consider three cases.

Lemma: The composition of continuous
functions is continuous, namely if f :
C1xC2x…xCn"C is continuous and gi : Di"Ci is
continuous for each i, 1!i!n, then f °
<g1,g2,…,gn> : D1xD2x…xDn"C, defined by
f ° (g1,g2,…,gn) <x1,x2,…,xn> =

f <g1(x1),g2(x2),…,gn(xn)>
is also continuous.

Proof: Exercise.

Chapter 10 55

Composition Involving a Parameter

F : (N"N)"(N"N) where

F f n = n + if n=0 then 0 else f(f(n-1)).

Lemma: If F1, F2, …, Fn are continuous

functionals, say Fi : (D
n"D)"(Dn"D) for each

i, 1!i!n, the functional F : (Dn"D)"(Dn"D)
defined by F f d = f <F1 f d, F2 f d, …, Fn f d>

for all f%Dn"D and d%Dn is also continuous.

Proof: Consider the case where n=1.
So F1 : (D"D)"(D"D),
F : (D"D)"(D"D), and F f d = f <F1 f d>.
Let f1 $ f2 $ f3 $ … be a chain in D"D.
The proof shows that lub{F fi|i"1} = F(lub{fi|i"1})
in two parts.

Chapter 10 56

Part 1: lub{F(fi)|i"1} $ F(lub{fi|i"1}).

For each i"1, fi $ lub{fi|i"1}.

Since F1 is monotonic, F1(fi) $ F1(lub{fi|i"1}),
which means that
F1 fi d $ F1 lub{fi|i"1} d for each d%D.

Since fi is monotonic, fi(F1 fi d) $ fi(F1 lub{fi|i"1} d).

But F fi d = fi < F1 fi d> and
fi <F1 lub{fi|i"1} d> $ lub{fi|i"1} <F1 lub{fi|i"1} d>.

Therefore, F fi d $ lub{fi|i"1} <F1 lub{fi|i"1} d> for
each i"1 and d%D.
So, lub{F(fi)|i"1} d = lub{F fi d|i"1} $
lub{fi|i"1} <F1 lub{fi|i"1} d> = F lub{fi|i"1} d for d%D.

Part 2: F(lub{fi|i"1}) $ lub{F(fi)|i"1}.
For any d%D, F lub{fi|i"1} d

= lub{fi|i"1} <F1 lub{fj|j"1} d> by defn of F,

= lub{fi|i"1}(lub{F1(fj)|j"1} d) since F1 is cont,

= lub{lubi{fi|i"1} <{F1(fj)|j"1} d>|i"1}
since lub{fi|i"1} is continuous

= lub{lub{fi({F1(fj)|j"1} d)}|i"1}
by definition of lub{fi|i"1}. †

Chapter 10 57

If j!i, fj $ fi,
F1 fj $ F1 fi since F1 is monotonic,
F1 fj d $ F1 fi d for each d%D, and
fi <F1 fj d> $ fi <F1 fi d> since fi is monotonic.

If i<j, fi $ fj, and
fi <F1 fj d> $ fj <F1 fj d> for each d%D

by the meaning of $.

So, fi <F1 fj d> $ lub{fn(F1 fn d)|n"1}
for each i,j"1.

But lubn{fn(F1 fn d)} = lubn{F fn d|i"1}
= lubn{F(fn)|i"1} d

by the definition of F.
So fi <F1 fj d> $ lub{F(fn)|n"1} d for each i,j"1,

and
lub{fi <F1 fj d>|i"1} $ lub{F(fn)|n"1}d for each j"1.

Hence
lub{lub{fi <F1 fj d>|i"1}|j"1} $ lub{F(fn)|i"1} d.

Combining with † gives
F(lub{fi|i"1}) d $ lubn{F(fn)|i"1} d.

Chapter 10 58

Theorem: Any functional H defined by the
composition of naturally extended functions on
elementary domains, constant functions, the
identity function, the if-then-else conditional
expression, and a function variable f, is
continuous.

Proof: The proof follows by induction on the
structure of the definition of the functional. The
basis is handled by the continuity of natural
extensions, constant functions, and the identity
function. The induction step relies on the
lemmas which state that the composition of
continuous functions, possibly involving f, is
continuous.

Look at Example 14:

H : (N"N)"(N"N) where

H h n = n + if n=0 then 0 else h(h(n-1))

= if n=0 then n else n+h(h(n-1)).

Chapter 10 59

Fixed Points for Nonrecursive Functions

Find the least fixed point for the function
h(n) = n3 - 3n defined on the integers Z.

First Interpretation:

The natural extension h+ of h is a continuous
function on the elementary domain Z!{#}.

Then the least fixed point of h+ may be
constructed as the least upper bound of the
ascending sequence:

$ h+(#) $ h+(h+(#)) $ h+(h+(h+(#))) $ …
But h+(#) = #,

 and so (h+)k(#) = h+((h+)k-1(#)) = h+(#) = #
 for any k"1.
Therefore, lub {(h+)k(#)|k"0} = lub {#|k"0} = # is
the least fixed point.

In fact, h+ has four fixed points in Z!{#}:

h+(0) = 0

h+(2) = 2

h+(-2) = -2

h+(#) = #

0-2

!

2

Chapter 10 60

Second Interpretation:

Think of h(n) = n3 - 3n as a rule defining a
“recursive” function that just has no actual
recursive call of h.

The corresponding functional

H : (Z"Z)"(Z"Z) is defined by the rule:

H h n = n3 - 3n.

A function h satisfies definition h(n) = n3 - 3n if
and only if it is a fixed point of H, that is H h = h.

The fixed point construction:

H0 # n = #(n) = #

H1 # n = n3 - 3n

H2 # n = n3 - 3n

H3 # n = n3 - 3n
:

Hk # n = n3 - 3n
:

Therefore, the least fixed point is
lub{Hk(#)|k"0} = &n . n3 - 3n, which follows the
same definition rule as the original function h.

Chapter 10 61

Revisiting Denotational Semantics

The recursive definition

execute [[while E do C]] sto =
if evaluate [[E]] sto = bool(true)
then execute [[while E do C]] (execute [[C]] sto)
else sto

violates the principle of compositionality.

The function execute [[while E do C]] satisfies
the recursive definition above if and only if it is
a fixed point of the functional

W f s = if evaluate [[E]] s = bool(true)
then f(execute [[C]] s) else s

= if evaluate [[E]] s = bool(true)
then (f °execute [[C]]) s else s.

We obtain a nonrecursive and compositional
definition of the meaning of a while command
by means of

execute [[while E do C]] = fix W.

Chapter 10 62

We gain insight into both the while command
and fixed point semantics by constructing a
few terms in the ascending chain whose least
upper bound is fix W,

W0 # $ W1
 # $ W2 # $ W3 # $ …

where fix W = lub {W
i # | i"0}.

The fixed point construction for W:

W0 # s = #

W1 # s = W (W0 #) s
= if evaluate [[E]] s = bool(true)

then #(execute [[C]] s) else s
= if evaluate [[E]] s = bool(true)

then # else s

Let exC stand for the function execute [[C]].

Chapter 10 63

Then

W2 # s = W (W1 #) s
= if evaluate [[E]] s = bool(true)

then W1 # (exC s) else s
= if evaluate [[E]] s = bool(true)

then
(if evaluate [[E]] (exC s) = bool(true)

then # else exC s)
else s

W3 # s = W (W2 #) s
= if evaluate [[E]] s = bool(true)

then W2 # (exC s) else s
= if evaluate [[E]] s = bool(true)

then (if evaluate [[E]] (exC s) = bool(true)
then
(if evaluate [[E]] (exC (exC s)) = bool(true)

then # else exC (exC s))
else (exC s))

else s

Chapter 10 64

 = if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then (if evaluate [[E]] (exC2 s) = bool(true)
then # else (exC2 s))

else (exC s))
else s

W4 # s =
if evaluate [[E]] s = bool(true)

then (if evaluate [[E]] (exC s) = bool(true)
then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

then # else (exC3 s))

else (exC2 s))
else (exC s))

else s

Chapter 10 65

In general,
Wk+1 # s = W (Wk #) s

= if evaluate [[E]] s = bool(true)
then (if evaluate [[E]] (exC s) = bool(true)

then (if evaluate [[E]] (exC2 s) = bool(true)
then (if evaluate [[E]] (exC3 s) = bool(true)

:
then # else (exCk s))

 else (exCk-1 s))
:

else (exC2 s))
else (exC s))

else s

The function Wk+1 # allows the body C of the
while to execute up to k times.
Thus this approximation to the meaning of the
while command can handle any instance of a
while with at most k iterations of the body.

Any application of a while command will have
some finite number of iterations, say n.
Therefore its meaning is subsumed in the
approximation Wn+1 #.

Chapter 10 66

The least upper bound of this ascending
sequence provides semantics for the while
command:

execute [[while E do C]] = fix W = lub{Wi #|I"0}.

View the definition of execute [[while E do C]]
in terms of the fixed point identity,
W(fix W) = fix W, where

W f s = if evaluate [[E]] s = bool(true)
then f(execute [[C]] s) else s.

In this context,
execute [[while E do C]] = fix W

Now define loop = fix W. Then
execute [[while E do C]]

= loop
where loop s = (W loop) s

= loop where loop s =
if evaluate [[E]] s = bool(true)

then loop(execute [[C]] s) else s.

This approach produces the compositional
definition of execute [[while E do C]] used in
the specification of Wren, Figure 9.11.

Chapter 10 67

Fixed Point Induction

Induction on the construction of the least fixed
point lub {F

i # | i"0}.

Let ((f) be a predicate that describes a property
for an arbitrary function f defined recursively.

To show (holds for the least fixed point Ffp of
the functional F corresponding to a recursive
definition of f, two conditions are needed:

Part 1: Show by induction that (holds for each
element in the ascending chain

$ F # $ F2 # $ F3 # $ … and

Part 2: Show that (remains true when the
least upper bound is taken.

Part 2 is handled by defining a class of predi-
cates with the necessary property.

A predicate is called admissible if it has the
property that whenever the predicate hold for
an ascending chain of functions, it also must
hold for the least upper bound of that chain.

Chapter 10 68

Theorem: Any finite conjunction of inequalities
of the form '(F) $)(F), where ' and) are con-
tinuous functionals, is an admissible predicate.
This includes terms of the form '(F) =)(F).

Proof: See [Manna72]. !

Mathematical induction is used to verify the
condition in Part 1:

Given a functional F : (D"D)"(D"D) for some
domain D and admissible predicate ((f), show:

a) ((#) holds where # : D"D, and

b) for any i"0, if ((Fi(#)), then ((Fi+1(#)).

An alternate version of condition b) is:

b') for any f : D"D, if ((f), then ((F(f)).

Either formulation is sufficient to infer that the
predicate (holds for every function in the

ascending chain {Fi # | i"0}.

Chapter 10 69

Example

H h n = if n=0 then 0 else (2n-1)+h(n-1) with
least fixed point Hfp.

Prove that Hfp $ &n . n2.

Let ((f) be the predicate f $ &n . n2.

a) Since # $ &n . n2, ((#) holds.

b') Suppose ((h), that is, h $ &n . n2.

Then H h n= if n=0 then 0 else (2n-1)+h(n-1)
$ if n=0 then 0 else (2n-1)+(n-1)2

= if n=0 then 0 else n2

= n2 for n"0.

Therefore, ((H(h)) holds, and by fixed point

induction Hfp $ &n . n2. !

Chapter 10 70

Paradoxical Combinator

An implementation of the fixed-point operator
fix in the (untyped) lambda calculus:

define Y = &f . (&x . f (x x)) (&x . f (x x))

or in the lambda calculus evaluator

define Y = (L f ((L x (f (x x))) (L x (f (x x))))).

Reduction proves Y satisfies fixed-point identity.

Y E = (&f . (&x . f (x x)) (&x . f (x x))) E
* (&x . E (x x)) (&x . E (x x))

* E ((&x . E (x x)) (&x . E (x x)))
* E (&h . (&x . h (x x)) (&x . h (x x)) E)
= E (Y E).

Calculation follows normal order reduction.

Applicative order strategy leads to a
nonterminating reduction:

Y E = (&f . (&x . f (x x)) (&x . f (x x))) E
* (&f . f ((&x . f (x x)) (&x . f (x x)))) E
* (&f . f (f ((&x . f (x x)) (&x . f (x x))))) E
* …

Chapter 10 71

Fixed-Point Identity

F(fix F) = fix F

Add a reduction rule that carries out effect of
fixed-point identity from right to left to replicate
the functional F—namely, fix F * F(fix F).

Consider this definition of a function involving
powers of 2 with its associated functional:

two n = if n=0 then 1 else 2•two(n-1)+1

and

Two = &h . &n . if n=0 then 1 else 2•h(n-1)+1.

The least fixed point of Two, (fix Two), serves
as the definition of the two function.

The function (fix Two) is not recursive and can
be “reduced” using the fixed-point identity

fix Two * Two (fix Two).

Chapter 10 72

The replication of the function encoded in
the fix operator enables a reduction to create
as many copies of the original function as it
needs.

(fix Two) 4

* (Two (fix Two)) 4

* (&h . &n . if n=0 then 1
else 2•h(n-1)+1) (fix Two) 4

* (&n . if n=0 then 1
else 2•(fix Two)(n-1)+1) 4

* if 4=0 then 1 else 2•(fix Two)(4-1)+1

* 2•((fix Two) 3)+1

* 2•((Two (fix Two)) 3)+1

* 2•((&h . &n . if n=0 then 1
 else 2•h(n-1)+1) (fix Two) 3)+1

Chapter 10 73

* 2•((&n . if n=0 then 1
else 2•(fix Two)(n-1)+1) 3)+1

* 2•((if 3=0 then 1 else 2•(fix Two)(3-1))+1)+1

* 2•(2•((fix Two) 2)+1)+1

* 2•(2•((Two (fix Two)) 2)+1)+1

* 2•(2•((&h . &n . if n=0 then 1
else 2•h(n-1)+1) (fix Two) 2)+1)+1

* 2•(2•((&n . if n=0 then 1
else 2•(fix Two)(n-1)+1) 2)+1)+1

* 2•(2•(if 2=0 then 1
else 2•((fix Two) (2-1))+1)+1)+1

* 2•(2•(2•((fix Two) 1))+1)+1)+1

* 2•(2•(2•((Two (fix Two)) 1)+1)+1)+1

Chapter 10 74

* 2•(2•(2•((&h . &n . if n=0 then 1
else 2•h(n-1)+1) (fix Two) 1)+1)+1)+1

* 2•(2•(2•((&n . if n=0 then 1
else 2•(fix Two)(n-1)+1) 1)+1)+1)+1

* 2•(2•(2•(if 1=0 then 1
else 2•((fix Two)(1-1))+1)+1)+1)+1

* 2•(2•(2•(2•((fix Two) 0)+1)+1)+1)+1

* 2•(2•(2•(2•((Two (fix Two)) 0)+1)+1)+1)+1

* 2•(2•(2•(2•((&h . &n . if n=0 then 1
else 2•h(n-1)+1) (fix Two) 0)+1)+1)+1)+1

* 2•(2•(2•(2•((&n . if n=0 then 1
else 2•((fix Two) (n-1))+1) 0)+1)+1)+1)+1

* 2•(2•(2•(2•(if 0=0 then 1
else 2•((fix Two) (0-1))+1)+1)+1)+1)+1

* 2•(2•(2•(2•1+1)+1)+1)+1 = 31

