Domain Theory

Recursive Definitions

$f(n)=$ if $n=0$ then 1 else $f(n-1)$
$g(n)=$ if $n=0$ then 1 else $g(n+1)$
or
define $f=\lambda n .($ if $($ zerop $n) 1(f($ sub $n 1)))$
define $\mathrm{g}=\lambda \mathrm{n}$. (if (zerop n$) 1(\mathrm{~g}($ succ n$))$)
A function satisfies a recursive definition iff it is a solution to an equation:

$$
\begin{aligned}
& f=\lambda n .(\text { if }(\text { zerop } n) 1(f(\text { sub n } 1))) \\
& g=\lambda n .(\text { if }(\text { zerop } n) 1(g(\text { succ } n)))
\end{aligned}
$$

Similar to solving a mathematical equation:

$$
x=x^{2}-4 x+6
$$

Other Recursive Definitions

Concrete Syntax

$$
\begin{aligned}
<c m d> & ::=\text { if }<\text { boolean expr> } \\
& \text { then <cmd seq> end if }
\end{aligned}
$$

<cmd seq> ::= <cmd>
| <cmd> ; <cmd seq>

Lists of Numbers

List $=\{n i\} \cup(N \times$ List $)$
where nil represents the empty list

Model for Pure Lambda Calculus

$\mathrm{V}=$ set of variables
$\mathrm{D}=\mathrm{V} \cup(\mathrm{D} \rightarrow \mathrm{D})$
Problem with Cardinality
$I D \rightarrow \mathrm{DI} \leq \mathrm{IDI}<\mathrm{P}(\mathrm{D})|\leq \mathrm{ID} \rightarrow \mathrm{D}|$

Modeling Nontermination

Domains

Sets with a lattice-like structure.

Each domain contains a bottom element \perp that is "less than" all other elements.

For domains of functions, bottom represents a computation that fails to complete normally.

Partial Order \subseteq on a Set S

A relation that is

- reflexive
- transitive
- antisymmetric

Definitions

$b \in S$ is a lower bound of a subset A of S if $b \subseteq x$ for all $x \in A$.
$u \in S$ is an upper bound of a subset A of S if $x \subseteq u$ for all $x \in A$.

A least upper bound of A, lub A, is an upper bound of A that is less than or equal every upper bound of A.

Example: Divides relation on $\{1,2,4,5,8,10,20\}$
Hasse diagram

$\operatorname{lub}\{2,5\}=$
lub $\{2,4,5,10\}=$
$\operatorname{lub}\{1,2,4\}=$
$\operatorname{lub}\{8,10\}=$
$\operatorname{lub}\{20\}=$

An ascending chain in a partially ordered set S is a sequence of elements $\left\{x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right\}$ with the property

$$
\mathrm{x}_{1} \subseteq \mathrm{x}_{2} \subseteq \mathrm{x}_{3} \subseteq \mathrm{x}_{4} \subseteq \ldots
$$

A complete partial order (cpo) on a set S is a partial order \subseteq with the two properties
a) There is an element $\perp \in S$ with $\perp \subseteq x$ for all $x \in S$.
b) Every ascending chain in S has a least upper bound in S.

On domains, \subseteq is thought of as approximates or is less defined than or equal to.

Any finite set with a partial order and a bottom element \perp is a cpo. Why?

Elementary Domains

Natural numbers and Boolean values with a discrete partial order:
for $x, y \in S, x \subseteq y$ iff $x=y$ or $x=\perp$.
Elementary domains correspond to "answers", the results produced by programs.

Proper and Improper values.

Also called flat domains.

Chapter 10

Example

Level $=\left\{\perp_{\mathrm{L}}\right.$, undergraduate,graduate,nondegree $\}$ and

Gender $=\left\{\perp_{\mathrm{G}}\right.$, female, male $\}$

Gender x Level

$<f, u><f, g><f, n>$

Imagine two processes to determine level and gender of a student.

Projection Functions

first : $\mathrm{AxB} \rightarrow \mathrm{A}$

defined by first <a,b> = a for any $<a, b>\in A x B$
and
second: $\mathrm{AxB} \rightarrow \mathrm{B}$
defined by second $<\mathrm{a}, \mathrm{b}>=\mathrm{b}$ for any $<\mathrm{a}, \mathrm{b}>\in \mathrm{AxB}$

Generalize to arbitrary product domains:
$D_{1} \times D_{2} \times \ldots \times D_{n}$

Application: Calculator Semantics

 evaluate $\llbracket=\rrbracket(\mathrm{a}, \mathrm{op}, \mathrm{d}, \mathrm{m})=(\mathrm{a}$, nop, op($\mathrm{a}, \mathrm{d}), \mathrm{m})$is a more readable translation of evaluate $\llbracket=\rrbracket$ st $=$
(first(st), nop,
second(st)(first(st),third(st)), fourth(st)).

Functions on Sum Domains

Let $S=A+B$.

1. Injection (creation):
inS : $A \rightarrow S$ is defined for $a \in A$

$$
\text { as inS } a=<a, 1>\in S
$$

inS: $\mathrm{B} \rightarrow \mathrm{S}$ is defined for $\mathrm{b} \in \mathrm{B}$ as inS $b=<b, 2>\in S$
2. Projection (selection):
outA : $S \rightarrow A$ is defined for $s \in S$ as outA $\mathrm{s}=\mathrm{a} \in \mathrm{A}$ if $\mathrm{s}=<\mathrm{a}, 1>$, and out $A s=\perp_{A} \in A$ if $s=<b, 2>$ or $s=\perp_{s}$.
outB : $S \rightarrow B$ is defined for $s \in S$ as outB $s=b \in B$ if $s=<b, 2>$, and outB $\mathrm{s}=\perp_{\mathrm{B}} \in \mathrm{B}$ if $\mathrm{s}=<\mathrm{a}, 1>$ or $\mathrm{s}=\perp_{\mathrm{s}}$.

Sum Domains

If A with ordering \subseteq_{A} and B with ordering \subseteq_{B} are complete partial orders, the sum domain of A and B is $A+B$ with the ordering \subseteq_{A+B} where

$$
\begin{aligned}
& A+B=\{<a, 1>\mid a \in A\} \cup\{<b, 2>\mid b \in B\} \cup\left\{\perp_{A+B}\right\}, \\
& <a, 1>\subseteq_{A+B}<c, 1>\text { if a } \subseteq_{A} c, \\
& <b, 2>\subseteq_{A+B}<d, 2>\text { if } b \subseteq_{B} d, \\
& \perp_{A+B} \subseteq_{A+B}<a, 1>\text { for each } a \in A, \\
& \perp_{A+B} \subseteq_{A+B}<b, 2>\text { for each } b \in B, \text { and } \\
& \perp_{A+B} \subseteq_{A+B} \perp_{A+B} .
\end{aligned}
$$

Thm: \subseteq_{A+B} is a complete partial order on $A+B$.
Proof: $\perp_{A+B} \subseteq x$ for any $x \in A+B$ by definition. An ascending chain $x_{1} \subseteq x_{2} \subseteq x_{3} \subseteq \ldots$ in $A+B$ may repeat \perp_{A+B} forever or eventually climb into either $A x\{1\}$ or $B x\{2\}$. In first case, least upper bound will be $\perp_{\mathrm{A}+\mathrm{B}}$, and in the other two cases the least upper bound will exist in A or B.
3. Inspection (testing):

Recall $\mathrm{T}=$ \{true, false, \perp_{T} \}.
is $A: \mathrm{S} \rightarrow \mathrm{T}$ is defined for $\mathrm{s} \in \mathrm{S}$ as
is A s iff there exists $\mathrm{a} \in \mathrm{A}$ with $\mathrm{s}=<\mathrm{a}, 1>$.
is $B: \mathrm{S} \rightarrow \mathrm{T}$ is defined for $\mathrm{s} \in \mathrm{S}$ as
is B s iff there exists $\mathrm{b} \in \mathrm{B}$ with $\mathrm{s}=<\mathrm{b}, 2>$.
In both cases, \perp_{S} is mapped to \perp_{T}.

Signature Diagram

Observe that inS is an overloaded function.

Storable Values for Wren

Functions for SV
inSV : Integer \rightarrow SV
inSV : Boolean \rightarrow SV
outInteger : SV \rightarrow Integer
isInteger: SV \rightarrow T
outBoolean : SV \rightarrow Boolean
isBoolean : SV $\rightarrow \mathrm{T}$

SV = Integer + Boolean $=$ $\{<n, 1>\mid n \in \operatorname{lnteger}\} \cup\{<b, 2>\mid b \in$ Boolean $\} \cup\left\{\perp_{S v}\right\}$
or
SV $=$ int(Integer) + bool(Boolean) $=$ $\{$ int(n)| $n \in \operatorname{Integer}\} \cup\{b o o l(b) \mid b \in B o o l e a n\} \cup\left\{\perp_{\text {sv }}\right\}$

Injection function

inSV : Integer \rightarrow SV where inSV $\mathrm{n}=\operatorname{int}(\mathrm{n})$.
The tags (constructors), int and bool, take the place of the overloaded injection function, inSV.
int : Integer \rightarrow SV
bool : Boolean \rightarrow SV

Projection function

outInteger: SV \rightarrow Integer where outlnteger int(n) = n outlnteger bool(b) $=\perp$ outlnteger $\perp_{\mathrm{SV}}=\perp$.

Functions on D^{*}

Injection: inD* $D^{k} \rightarrow D^{*}$
Projection: outD ${ }^{k}: D^{*} \rightarrow D^{k}$

Functions on Lists:

Let $L \in D^{*}$ and $e \in D$.
Then $L=<d, k>$ for $d \in D^{k}$ for some $k \geq 0$

$$
\text { where } \mathrm{D}^{0}=\{\text { nil }\} \text {. }
$$

1. head: $D^{*} \rightarrow D$ where
head $(\mathrm{L})=$ first $\left(\right.$ out $\left.D^{k}(\mathrm{~L})\right)$ if $\mathrm{k}>0$, and head (\langle nil, $0>$) $=\perp$.
2. tail : $\mathrm{D}^{*} \rightarrow \mathrm{D}^{*}$ where
tail $(\mathrm{L})=$ in $D^{*}\left(<2 n d\left(\right.\right.$ out $\left.D^{k}(\mathrm{~L})\right)$, 3 rd (outD $\left.{ }^{k}(\mathrm{~L})\right), \ldots$, $k t h\left(\right.$ out $\left.\left.D^{k}(\mathrm{~L})\right)>\right)$ if $k>0$, and
tail $(\langle n i l, 0\rangle)=\perp$.
3. null : $\mathrm{D}^{\star} \rightarrow$ T where
null (<nil,0>) = true, and
null $(\mathrm{L})=$ false if $\mathrm{L}=<\mathrm{d}, \mathrm{k}>$ with $\mathrm{k}>0$.
Therefore, null $(\mathrm{L})=i s D^{\circ}(\mathrm{L})$
4. prefix: $\mathrm{DxD}^{\star} \rightarrow \mathrm{D}^{\star}$ where
prefix $(\mathrm{e}, \mathrm{L})=$ in $D^{*}\left(<\mathrm{e}, 1\right.$ st $\left(\right.$ out $\left.D^{k}(\mathrm{~L})\right)$,

$$
\begin{aligned}
& \text { 2nd (outD } \left.D^{k}(\mathrm{~L})\right), \ldots, \\
& \left.\quad \text { kth }\left(\text { out }^{k}(\mathrm{~L})\right)>\right)
\end{aligned}
$$

5. affix : $\mathrm{D}^{*} \mathrm{xD} \rightarrow \mathrm{D}^{*}$ where
$\operatorname{affix}(\mathrm{L}, \mathrm{e})=$ in $D^{*}\left(<1 s t\left(\right.\right.$ out $\left.D^{k}(\mathrm{~L})\right)$,

$$
\begin{aligned}
& 2 n d\left(\text { outD }^{k}(\mathrm{~L})\right), \ldots, \\
& \left.\quad \text { kth }\left(\operatorname{outD}^{k}(\mathrm{~L})\right), \mathrm{e}>\right)
\end{aligned}
$$

Each of these five functions map bottom to bottom.
The binary functions prefix and affix produce \perp if either argument is bottom.

Sets of Functions

A function from a set A to a set B is total if $f(x) \in B$ is defined for every $x \in A$.

If A with ordering \subseteq_{A} and B with ordering \subseteq_{B} are complete partial orders, define $\operatorname{Fun}(\mathbf{A}, \mathbf{B})$ to be the set of all total functions from A to B.

Define \subseteq on $\operatorname{Fun}(A, B)$ as follows:

$$
\text { For } f, g \in \operatorname{Fun}(A, B) \text {, }
$$

$$
f \subseteq g \text { if } f(x) \subseteq_{B} g(x) \text { for all } x \in A
$$

Lemma: \subseteq is a partial order on $\operatorname{Fun}(A, B)$.
Proof: Follow the definition to show reflexive, transitive, and antisymmetric.
See text for complete proof.

Restrictions on Fun(A, B)

Monotonic

A function f in $\operatorname{Fun}(A, B)$ is monotonic if $x \subseteq_{A} y$ implies $f(x) \subseteq_{B} f(y)$ for all $x, y \in A$.

If \subseteq means "approximates", then when y has at least as much information as x, it follows that $f(y)$ has at least as much information as $f(x)$.

Continous

A function $f \in \operatorname{Fun}(A, B)$ is continuous if it preserves least upper bounds; that is, if $X=x_{1}$ $\subseteq_{A} x_{2} \subseteq_{A} x_{3} \subseteq_{A} \ldots$ is an ascending chain in A, then $f\left(l u b_{A} X\right)=l u b_{B}\{f(x) \mid x \in X\}$.
Also written $\mathrm{f}\left(l u b_{\mathrm{A}}\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)=\operatorname{lu} b_{\mathrm{B}}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}$

$$
\text { or } f\left(\mid u b_{A}\left\{x_{i} \mid i \geq 1\right\}\right)=\operatorname{lub}_{B}\left\{f\left(x_{i}\right) \mid i \geq 1\right\} \text {. }
$$

No surprises when taking the least upper bounds (limits) of approximations

Lemma: If $f \in \operatorname{Fun}(A, B)$ is continuous, then it is monotonic.
Proof: Suppose f is continuous and $x \subseteq_{A} y$. Then $x \subseteq_{A} y \subseteq_{A} y \subseteq_{A} y \subseteq_{A} \ldots$ is an ascending chain in A, and since f is continuous,

$$
\mathrm{f}(\mathrm{x}) \subseteq_{\mathrm{B}} / u b_{\mathrm{B}}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}=\mathrm{f}\left(\operatorname{lub_{A}\{ \mathrm {x},\mathrm {y}\})=\mathrm {f}(\mathrm {y}).}\right.
$$

Function Domains

Define $\mathbf{A} \rightarrow \mathbf{B}$ to be the set of functions in Fun(A, B) that are (monotonic and) continuous. This set is ordered by the relation \subseteq from Fun(A,B).
$\mathrm{F} \in \mathrm{Fun}(\mathrm{N} \rightarrow \mathrm{N}, \mathrm{N} \rightarrow \mathrm{N})$ defined by
$F \mathrm{~g}=\lambda \mathrm{n}$. if $\mathrm{g}(\mathrm{n})=\perp$ then 0 else 1 , for $g \in N \rightarrow N$
is not monotonic.
Proof by Counterexample:
Let $\mathrm{g}_{1}=\lambda \mathrm{n} . \perp$ and $\mathrm{g}_{2}=\lambda \mathrm{n} .0$. Then $\mathrm{g}_{1} \subseteq \mathrm{~g}_{2}$.
But $\mathrm{F}\left(\mathrm{g}_{1}\right)=\lambda \mathrm{n} .0, \mathrm{~F}\left(\mathrm{~g}_{2}\right)=\lambda \mathrm{n} .1$, and functions
$\lambda n .0$ and $\lambda n .1$ are not related at all by \subseteq.

Lemma: The relation \subseteq restricted to $A \rightarrow B$ is a partial order.
Proof: The properties reflexive, transitive, and antisymmetric are inherited by a subset.

Lub Lemma: If $x_{1} \subseteq x_{2} \subseteq x_{3} \subseteq \ldots$ is an ascending chain in a cpo A, and $x_{i} \subseteq d \in A$ for each $i \geq 1$, then lub $\left\{x_{i} \mid i \geq 1\right\} \subseteq d$.
Proof: By the definition of least upper bound, if d is a bound for the chain, the least upper bound, $\operatorname{lub}\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}$, must be no larger than d . I

Limit Lemma: If $\mathrm{x}_{1} \subseteq \mathrm{x}_{2} \subseteq \mathrm{x}_{3} \subseteq \ldots$ and $y_{1} \subseteq y_{2} \subseteq y_{3} \subseteq \ldots$ are ascending chains in cpo A, and $x_{i} \subseteq y_{i}$ for each $i \geq 1$, then $\mid u b\left\{x_{i} \mid i \geq 1\right\} \subseteq l u b\left\{y_{i} \mid i \geq 1\right\}$.
Proof: For each $i \geq 1, x_{i} \subseteq y_{i} \subseteq l u b\left\{y_{i} \mid i \geq 1\right\}$. Therefore $l u b\left\{x_{i} \mid i \geq 1\right\} \subseteq l u b\left\{y_{j} \mid i \geq 1\right\}$ by the Lub lemma (take $d=l u b\left\{y_{i} i \geq 1\right\}$).

Thm: The relation \subseteq on $A \rightarrow B$ is a complete partial order.
Proof: Since \subseteq is a partial order on $A \rightarrow B$, two properties need to be verified:

1. The bottom element in $\operatorname{Fun}(A, B)$ is also in $A \rightarrow B$; that is, the function $\perp(x)=\perp_{B}$ is monotonic and continuous.
2. For any ascending chain in $A \rightarrow B$, its least upper bound, which is an element of Fun (A, B), is also in $A \rightarrow B$, namely it is monotonic and continuous.

Part 1: If $x \subseteq_{A} y$ for some $x, y \in A$,
then $\perp(x)=\perp_{B}=\perp(y)$, which means $\perp(x) \subseteq_{B}$ $\perp(y)$, and so \perp is a monotonic function.
If $x_{1} \subseteq_{A} x_{2} \subseteq_{A} x_{3} \subseteq_{A} \ldots$ is an ascending chain in A, then its image under the function \perp will be the ascending chain $\perp_{B} \subseteq_{B} \perp_{B} \subseteq_{B} \perp_{B} \subseteq_{B} \ldots$, whose least upper bound is \perp_{B}. Therefore, $\perp\left(\mid u b_{A}\left\{x_{i} \mid i \geq 1\right\}\right)=\perp_{B}=\mid u b_{B}\left\{\perp\left(x_{i}\right) \mid i \geq 1\right\}$, and \perp is a continuous function.

Part 2: Let $f_{1} \subseteq f_{2} \subseteq f_{3} \subseteq \ldots$ be an ascending chain in $A \rightarrow B$, and let $F=l u b\left\{f_{j} \mid i \geq 1\right\}$ be its least upper bound (in Fun(A, B)). Remember the definition of $F, F(x)=\operatorname{lub}\left\{j_{i}(x) \mid i \geq 1\right\}$ for each $x \in A$. We need to show that F is monotonic and continuous so that we know F is a member of $A \rightarrow B$.

Monotonic:

If $x \subseteq_{A} y, f_{i}(x) \subseteq_{B} f_{i}(y) \subseteq_{B}$ lub $\left\{f_{i}(y) \mid i \geq 1\right\}$ for any i since each f_{i} is monotonic.
Therefore, $\mathrm{F}(\mathrm{y})=\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}(\mathrm{y}) \mathrm{l} \mathrm{i} \geq 1\right\}$ is an upper bound for each $\mathrm{f}_{\mathrm{i}}(\mathrm{x})$, and so the least upper bound of all the $f_{i}(x)$ satisfies $F(x)=l u b\left\{f_{i}(x) \mid i \geq 1\right\} \subseteq F(y)($ Lub lemma), and F is monotonic.

Continuous: Let $x_{1} \subseteq_{A} x_{2} \subseteq_{A} x_{3} \subseteq_{A} \ldots$ be an ascending chain in A. We need to show that $F\left(\mid u b\left\{x_{j} \mid j \geq 1\right\}\right)=\operatorname{lub}\left\{F\left(x_{j}\right) \mid j \geq 1\right\}$ where

$$
F(x)=l u b\left\{f_{i}(x) \mid i \geq 1\right\} \text { for each } x \in A \text {. }
$$

Note that " i " is used to index the ascending chain of functions from $A \rightarrow B$ while " j " is used to index the ascending chains of elements in A and B.
So F is continuous if

$$
\mathrm{F}\left(\mid u b\left\{\mathrm{x}_{\mathrm{j}} \mid \mathrm{j} \geq 1\right\}\right)=\operatorname{lub}\left\{\mathrm{F}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} .
$$

Recall these definitions and properties:

1. Each f_{j} is continuous:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{i}}\left(\operatorname{lub}\left\{\mathrm{x}_{\mathrm{j}} \mathrm{j} \geq 1\right\}\right)=\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} \\
& \text { for each chain }\left\{\mathrm{x}_{\mathrm{j}} \mid \mathrm{j} \geq 1\right\} \text { in } \mathrm{A} .
\end{aligned}
$$

2. Definition of F :

$$
F(x)=l u b\left\{f_{i}(x) \mid i \geq 1\right\} \text { for each } x \in A .
$$

$$
\begin{aligned}
& \text { So } \begin{aligned}
\mathrm{F}\left(\mid u b\left\{x_{j} \mathrm{j} \mid \mathrm{j} \geq 1\right\}\right) & =\operatorname{lub}\left\{f_{\mathrm{i}}\left(\operatorname{lub}\left\{\mathrm{x}_{\mathrm{j}} \mid \mathrm{j} \geq 1\right\}\right) \mid \mathrm{i} \geq 1\right\} & & \text { by } 2 \\
& =\operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\}\right| \mathrm{i} \geq 1\right\} & & \text { by } 1 \\
& =\operatorname{lub}\left\{\mid u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid i \geq 1\right\} \mathrm{j} \geq 1\right\} & & \ddagger \\
& =\operatorname{lub}\left\{\mathrm{F}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} & & \text { by } 2 .
\end{aligned}
\end{aligned}
$$

Look at Figure 10.9.

Chapter 10

Second Half

$\operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{i} \geq 1\right\}\right| \mathrm{j} \geq 1\right\} \subseteq \operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\}\right| \mathrm{i} \geq 1\right\}$
For all i and k,
$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{k}}\right) \subseteq \mathrm{f}_{\mathrm{i}}\left(\operatorname{lub}\left\{\mathrm{x}_{\mathrm{j}} \mathrm{j} \geq 1\right\}\right)=\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{l} \geq 1\right\}$ by using the fact that each f_{i} is monotonic and continuous (the columns of Figure 10.9).
We have chains

$$
f_{1}\left(x_{k}\right) \subseteq f_{2}\left(x_{k}\right) \subseteq f_{3}\left(x_{k}\right) \subseteq \ldots \text { for each } k
$$

and $\operatorname{lub}\left\{\mathrm{f}_{1}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{lj} \geq 1\right\} \subseteq \operatorname{lub}\left\{\mathrm{f}_{2}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\}$

$$
\subseteq l u b\left\{f_{3}\left(x_{j}\right) \mid j \geq 1\right\} \subseteq \ldots
$$

So for each k,
lub $\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{k}}\right) \mid \mathrm{i} \geq 1\right\} \subseteq \operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\}\right| i \geq 1\right\}$ by the Limit lemma.
This corresponds to the rightmost column.

Hence

$\operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{k}}\right) \mid \mathrm{i} \geq 1\right\}\right| \mathrm{k} \geq 1\right\} \subseteq \operatorname{lub}\left\{/ u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{j} \geq 1\right\} \mathrm{l} \geq 1\right\}$ by the Lub lemma. Now change k to j .

Therefore F is continuous.

First Half

$\operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\}\right| \mathrm{i} \geq 1\right\} \subseteq \operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid i \geq 1\right\}\right| \mathrm{j} \geq 1\right\}$
For all k and $\mathrm{j}, \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right) \subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{li} \geq 1\right\}$ by the definition of F (the rows of Figure 10.9).
We have chains

$$
\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}\right) \subseteq \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{2}\right) \subseteq \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{3}\right) \subseteq \ldots \text { for each } \mathrm{k}
$$

and $\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{1}\right) \mathrm{li} \geq 1\right\} \subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{2}\right) \mid \mathrm{i} \geq 1\right\}$

$$
\subseteq l u b\left\{f_{i}\left(x_{3}\right) \mid i \geq 1\right\} \subseteq \ldots
$$

So for each k,
$\operatorname{lub}\left\{\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} \subseteq \operatorname{lub}\left\{\mathrm{lub}\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{i} \geq 1\right\} \mid \mathrm{j} \geq 1\right\}$ by the Limit lemma.
This corresponds to the top row (remember each f_{k} is continuous).
Hence
$\operatorname{lub}\left\{l u b\left\{\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} \mathrm{k} \geq 1\right\} \subseteq \operatorname{lub}\left\{\left|u b\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right) \mid \mathrm{i} \geq 1\right\}\right| \mathrm{j} \geq 1\right\}$ by the Lub lemma. Now change k to i.

Example 10

Student $=\{\perp$, Autry, Bates $\}$
Level =
$\{\perp$, undergraduate, graduate, nondegree \}
Fun(Student,Level) contains $64\left(4^{3}\right)$ elements.
Only 19 of these functions are monotonic and continuous.

Which of these functions are monotonic?
$f=\{\perp \mapsto \perp$, Autry \mapsto nondegree, Bates $\mapsto \perp\}$
$\mathrm{g}=\{\perp \mapsto$ grad, Autry \mapsto grad, Bates $\mapsto \perp\}$
$\mathrm{h}=\{\perp \mapsto$ grad, Autry \mapsto grad, Bates \mapsto grad $\}$

Thm: If A and B are cpos, A is a finite set, and $f \in \operatorname{Fun}(A, B)$ is monotonic, f is also continuous.
Proof: Let $x_{1} \subseteq_{A} x_{2} \subseteq_{A} x_{3} \subseteq_{A} \ldots$ be an ascending chain in A.
Since A is finite, for some $k, x_{k}=x_{k+1}=$
$\mathrm{X}_{\mathrm{k}+2}=\ldots$.
So the chain is a finite set, $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$, whose least upper bound is x_{k}.
Since f is monotonic,

$$
\begin{aligned}
& f\left(x_{1}\right) \subseteq_{B} f\left(x_{2}\right) \subseteq_{B} f\left(x_{3}\right) \subseteq_{B} \ldots \subseteq_{B} f\left(x_{k}\right) \\
&==f\left(x_{k+1}\right)=f\left(x_{k+2}\right)=\ldots .
\end{aligned}
$$

is an ascending chain in B, which is also a finite set, namely $\left\{f\left(\mathrm{x}_{1}\right), \mathrm{f}\left(\mathrm{x}_{2}\right), \mathrm{f}\left(\mathrm{x}_{3}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right\}$ with $f\left(x_{k}\right)$ as its least upper bound.
Therefore, $\mathrm{f}\left(\mathrm{lub}\left\{\mathrm{x}_{\mathrm{i}} \mathrm{l} \geq 1\right\}\right)=\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)=\operatorname{lub}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mid \mathrm{l} \geq 1\right\}$, and f is continuous.

Continuity of Functions on Domains

Thm: These functions on domains and their analogs are continuous:

1. first: $\mathrm{AxB} \rightarrow \mathrm{A}$
2. in $S: A \rightarrow S$ where $S=A+B$
3. out $\mathrm{A}: \mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}$
4. is $A: A+B \rightarrow T$

Proof:
2. Let $\mathrm{a}_{1} \subseteq \mathrm{a}_{2} \subseteq \mathrm{a}_{3} \subseteq \ldots$ be an ascending chain in domain A.
Observe that $1 \subseteq 1 \subseteq 1 \subseteq 1 \subseteq \ldots$ is an ascending chain in N .
Then $<a_{1}, 1>\subseteq<a_{2}, 1>\subseteq<a_{3}, 1>\subseteq \ldots$ is an ascending chain in S.
So inS($\left.\mid u b\left\{a_{i} \mid i \geq 1\right\}\right)=<l u b\left\{a_{i} \mid i \geq 1\right\}, 1>$

$$
\begin{aligned}
& =<\operatorname{lub}\left\{\mathrm{a}_{\mathrm{i}} \mid i \geq 1\right\}, \operatorname{lub}\{1 \mid \mathrm{i} \geq 1\}> \\
& =\operatorname{lub}\left\{<\mathrm{a}_{\mathrm{i}}, 1>\mid \mathrm{i} \geq 1\right\} \\
& =\operatorname{lub}\left\{\operatorname{inS}\left(\mathrm{a}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\} .
\end{aligned}
$$

Case 3:

For some $k \geq 1, s i l_{i}=<b_{i}, 2>$ for all $i \geq k$ where $\mathrm{b}_{\mathrm{i}} \in \mathrm{B}$.
Then outA($\left./ u b\left\{s_{j} \mid i \geq 1\right\}\right)=$ outA(<lub\{b|lizk\},2>)

$$
=\perp_{\mathrm{A}}
$$

and $\operatorname{lub}\left\{o u t A\left(\mathrm{si}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\}=\operatorname{lub}\left\{\perp_{\mathrm{A}} \mid \mathrm{li} \geq 1\right\}=\perp_{\mathrm{A}}$.

Thm: The composition of continuous functions is continuous.
Proof: Suppose f:A $\rightarrow B$ and g:B $\rightarrow C$ are continuous functions.
Let $\mathrm{x}_{1} \subseteq \mathrm{x}_{2} \subseteq \mathrm{x}_{3} \subseteq \ldots$ be an ascending chain in A .
Then $f\left(x_{1}\right) \subseteq f\left(x_{2}\right) \subseteq f\left(x_{3}\right) \subseteq \ldots$ is an ascending chain in B with $f\left(\mid u b\left\{x_{i} \mid i \geq 1\right\}\right)=\operatorname{lub}\left\{f\left(x_{i}\right) \mid i \geq 1\right\}$ by the continuity of f.
Since g is continuous,
$g\left(f\left(x_{1}\right)\right) \subseteq g\left(f\left(x_{2}\right)\right) \subseteq g\left(f\left(x_{3}\right)\right) \subseteq \ldots$ is an
ascending chain in C with $\mathrm{g}\left(\operatorname{lub}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\}\right)=$ lub\{g(f($\left.\left.\mathrm{x}_{\mathrm{i}}\right)\right)$ li $\left.\geq 1\right\}$.
Therefore $\mathrm{g}\left(\mathrm{f}\left(\operatorname{lub}\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}\right)\right)=\mathrm{g}\left(\operatorname{lub}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\}\right)=$ $\operatorname{lub}\left\{g\left(f\left(x_{i}\right)\right) \mid i \geq 1\right\}$ and $g \circ f$ is continuous.

Fixed Point Semantics

Goal: Provide meaning for recursive definitions.
First Step: Transform partial functions into total functions.

Example

f is a function with domain $D=\{0,1,2\}$ and codomain $\mathrm{C}=\{0,1,2\}$ defined by:
$f(n)=2 / n$
or
$f=\{<1,2>,<2,1>\}$.
Note that $f(0)$ is undefined;
therefore f is a partial function.
Now extend f to make it a total function:

$$
f=\{<1,2>,<2,1>,<0, ?>\} .
$$

Add an undefined element to the codomain, $\mathrm{C}^{+}=\{\perp, 0,1,2\}$, and for symmetry, do likewise with the domain, $D^{+}=\{\perp, 0,1,2\}$.

Define the natural extension of f by having \perp_{D} map to \perp_{C} under f :

$$
\left.\left.\left.f^{+}=\{\langle\perp, \perp\rangle,<0, \perp\rangle,<1,2\right\rangle,<2,1\right\rangle\right\} .
$$

Define a relationship that orders functions and domains according to how "defined" they are, putting a lattice-like structure on the elementary domains:

$$
\text { For } x, y \in D^{+}, x \subseteq y \text { if } x=\perp \text { or } x=y \text {. }
$$

This relation is read "x approximates y " or " x is less defined or equal to y ".

Thm: Let f^{+}be a natural extension of a function between two sets D and C so that f^{+}is a total function from D^{+}to C^{+}.
Then f^{+}is monotonic and continuous.
Proof: Let $\mathrm{x}_{1} \subseteq \mathrm{x}_{2} \subseteq \mathrm{x}_{3} \subseteq \ldots$ be an ascending chain in the domain $\mathrm{D}^{+}=\mathrm{D} \cup\{\perp\}$.
Two possibilities for the behavior of the chain:
Case 1: $x_{i}=\perp_{D}$ for all $i \geq 1$.
Then $\operatorname{lub}\left\{x_{\mathrm{i}} \mathrm{i} \geq 1\right\}=\perp_{\mathrm{D}}$, and
$\mathrm{f}^{+}\left(\mid u b\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}\right)=\mathrm{f}^{+}\left(\perp_{\mathrm{D}}\right)$

$$
=\perp_{C}=\operatorname{lub}\left\{\perp_{C}\right\}=\operatorname{lub}\left\{\mathrm{f}^{+}\left(\mathrm{x}_{\mathrm{i}}\right) \mid i \geq 1\right\} .
$$

Case 2: $x_{i}=\perp_{D}$ for $1 \leq i \leq k$ and $x_{k+1}=x_{k+2}=x_{k+3}$ = ..., since once the terms move above bottom, the sequence is constant in a flat domain.
Then $\operatorname{lub}\left\{x_{i} \mid i \geq 1\right\}=x_{k+1}$, and
$\mathrm{f}^{+}\left(\mid u b\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}\right)=\mathrm{f}^{+}\left(\mathrm{x}_{\mathrm{k}+1}\right)$

$$
=\operatorname{lub}\left\{\perp_{\mathrm{c}}, \mathrm{f}^{+}\left(\mathrm{x}_{\mathrm{k}+1}\right)\right\}=\operatorname{lub}\left\{\mathrm{f}^{+}\left(\mathrm{x}_{\mathrm{i}}\right) \mid i \geq 1\right\} .
$$

If f^{+}is continuous, it is also monotonic.

The natural extension of a function whose domain is a Cartesian product, namely $\mathrm{f}: \mathrm{D}_{1}{ }^{+} \mathrm{xD}_{2}{ }^{+} \mathrm{x} \ldots \mathrm{xD}_{\mathrm{n}}{ }^{+} \rightarrow \mathrm{C}^{+}$, has the property that $f^{+}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\perp_{C}$ whenever at least one $x_{i}=\perp$.
Any function that satisfies this property is known as a strict function.

Thm: If $f^{+}: D_{1}{ }^{+} x D_{2}{ }^{+} x \ldots x D_{n}{ }^{+} \rightarrow C^{+}$is a natural extension where $\mathrm{D}_{\mathrm{i}}^{+}, 1 \leq \mathrm{i} \mathrm{n}$, and C^{+}are elementary domains, then f^{+}is monotonic and continuous.
Proof: Consider the case where $\mathrm{n}=2$. Show f^{+}is continuous.
Let $\left\langle x_{1}, y_{1}\right\rangle \subseteq\left\langle x_{2}, y_{2}\right\rangle \subseteq\left\langle x_{3}, y_{3}\right\rangle \subseteq \ldots$ be an ascending chain in $\mathrm{D}_{1}{ }^{+} x \mathrm{D}_{2}{ }^{+}$. Since $\mathrm{D}_{1}{ }^{+}$and $\mathrm{D}_{2}{ }^{+}$ are elementary domains, the chains $\left\{x_{i} \mid i \geq 1\right\}$ and $\left\{y_{i} \mid i \geq 1\right\}$ must follow one of the two cases in the previous proof, namely all \perp or eventually a constant proper value in $\mathrm{D}_{\mathrm{i}}{ }^{+}$.

Case 1: $\operatorname{lub}\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}=\perp_{\mathrm{D}_{1}+}$ or $\operatorname{lub}\left\{\mathrm{y}_{\mathrm{i}} \mid i \geq 1\right\}=\perp_{\mathrm{D}_{2^{+}}}$ (or both).

Then $\mathrm{f}^{+}\left(\mid u b\left\{\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}>\right| \mathrm{l} \geq 1\right\}\right)$

$$
=f^{+}\left(<l u b\left\{x_{\mathrm{i}} \mid \mathrm{l} \geq 1\right\}, \mid u b\left\{y_{\mathrm{i}}|\mathrm{i}| \geq 1\right\}>\right)=\perp_{\mathrm{C}^{+}}
$$

because f^{+}is a natural extension and one of its arguments is \perp, and
$\operatorname{lub}\left\{\mathrm{f}^{+}\left(\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\rangle\right) \mid \mathrm{i} \geq 1\right\}=\operatorname{lub}\left\{\mathrm{L}_{\mathrm{C}+} \mathrm{li} \geq 1\right\}=\perp_{\mathrm{C}^{+}}$.

Case 2: $\operatorname{lub}\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}=\mathrm{x} \in \mathrm{D}_{1}$

$$
\text { and } l u b\left\{y_{i} \mid i \geq 1\right\}=y \in D_{2}
$$

Since $D_{1}{ }^{+}$and $D_{2}{ }^{+}$are both elementary domains, there is an integer k

$$
\text { such that } x_{i}=x \text { and } y_{i}=y \text { for all } i \geq k \text {. }
$$

So $f^{+}\left(l u b\left\{\left\langle x_{i}, y_{i}>\right| i \geq 1\right\}\right)$

$$
\begin{aligned}
& =\mathrm{f}^{+}\left(<\left|u b\left\{x_{i} \mid i \geq 1\right\},\right| u b\left\{y_{i} \mid i \geq 1\right\}>\right) \\
& =\mathrm{f}^{+}\left(\langle x, y>) \in \mathrm{C}^{+}\right.
\end{aligned}
$$

and $\operatorname{lub}\left\{\mathrm{f}^{+}\left(\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\rangle\right) \mathrm{li} \geq 1\right\}=\operatorname{lub}\left\{\perp_{\mathrm{C}^{+}, \mathrm{f}^{+}}(\langle\mathrm{x}, \mathrm{y}\rangle)\right\}$

$$
=f^{+}(<x, y>) .
$$

Second Step: Give meaning to recursive definitions.

Consider a recursively defined function f :
$N \rightarrow N$ where $N=\{\perp, 0,1,2,3, \ldots\}$ and
$\mathrm{f}(\mathrm{n})=$
if $n=0$ then 5 else if $n=1$ then $f(n+2)$ else $f(n-2)$
Two questions:

1. What function, if any, does this equation in f denote?
2. Does it specify more than one function?

Define a functional F by
$\mathrm{F}:(\mathrm{N} \rightarrow \mathrm{N}) \rightarrow(\mathrm{N} \rightarrow \mathrm{N})$ where
$(F(f))(n)=$
if $n=0$ then 5 else if $n=1$ then $f(n+2)$ else $f(n-2)$
Function application associates to the left; omit the parentheses with multiple applications, writing $\mathrm{F} f \mathrm{n}$ for $(\mathrm{F}(\mathrm{f}))(\mathrm{n})$.

Example

Consider the natural extension of the conditional expression operation:
(if abc) = if a then b else c .
The natural extension unduly restricts the meaning of the conditional expression.
For example, we prefer that the following expression return 0 when $x=1$ and $y=0$: if $\mathrm{y}>0$ then x / y else 0 .

If we interpret the undefined operation $1 / 0$ as \perp, when $\mathrm{x}=1$ and $\mathrm{y}=0$,
$\left(\mathrm{if}^{+} \mathrm{y}>0 \mathrm{x} / \mathrm{y} 0\right)=(\mathrm{if}+$ false $\perp 0)=\perp$ for a natural extension.

A function, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, satisfies the original definition (\dagger) if and only if it is a fixed point of the definition of $F,(\ddagger)$,
$F f n=f(n)$ for all $n \in N$ or just $F f=f$.

Once more:

Suppose f: $D \rightarrow C$ is a function defined recursively by $f(x)=\alpha(x, f)$ for each $x \in D$ where $\alpha(x, f)$ is some expression in x and f. Furthermore, let $F:(D \rightarrow C) \rightarrow(D \rightarrow C)$ be the functional defined by Ffx= $\alpha(x, f)$.
Then
$F f=f$ if and only if $F f x=f x$ for all $x \in D$ if and only if $\alpha(x, f)=f x$ for all $x \in D$ which is the same as $f(x)=\alpha(x, f)$ for all $x \in D$.
Using lambda calculus notation:
$F f=\lambda n$. if $n=0$ then 5 else if $n=1$ then $f(n+2)$ else $f(n-2)$
or
$F=\lambda f . \lambda n$. if $n=0$ then 5 else if $n=1$ then $f(n+2)$ else $f(n-2)$

Fixed Points in Mathematics

Function
$\mathrm{g}(\mathrm{n})=\mathrm{n}^{2}-6 \mathrm{n}$
$g(n)=n$
$g(n)=n+5$
$g(n)=2$

Fixed Points
0 and 7
all $n \in N$
none
2

Back to Functional F

The function $g=\lambda n .5$ is a fixed point of F :
$F g=\lambda n$. if $n=0$ then 5 else if $n=1$ then $g(n+2)$ else $\mathrm{g}(\mathrm{n}-2)$
$=\lambda n$. if $n=0$ then 5 else if $n=1$ then 5 else 5 $=\lambda n .5=g$.

Problem

$\mathrm{g}=\lambda \mathrm{n} .5$ does not agree with the operational behavior of the original recursive definition.
$f(1)=f(3)=f(1)=\ldots$ does not produce a value, whereas $g(1)=5$.

Special Fixed Point

Of the possible fixed points of a functional, chose the one that is "least defined" according to \subseteq.

1. Any fixed point of F embodies the information that can be deduced from F.
2. The least fixed point includes no more information than what must be deduced.

Define the meaning of a recursive definition of a function to be the "least" fixed point, with respect to \subseteq, of the corresponding functional F.

Does a least fixed point always exist?

Notation: Define f^{k} for each $k \geq 0$ inductively:
$f^{0}(x)=x$ is the identity function and
$f^{n+1}(x)=f\left(f^{n}(x)\right)$ for $n \geq 0$.

Note that $\mathrm{g}^{0}(\perp)=\perp$ has no effect on the least upper bound of $\left\{g^{i}(\perp) \mid i \geq 0\right\}$.

Let $v \in D$ be another fixed point for g.
Then $\perp \subseteq \mathrm{v}$ and $\mathrm{g}(\perp) \subseteq \mathrm{g}(\mathrm{v})=\mathrm{v}$, the basis step for induction.
Suppose $g^{i}(\perp) \subseteq$ v.
Then since g is monotonic, $g^{i+1}(\perp)=g\left(g^{i}(\perp)\right) \subseteq g(v)=v$, the induction step.
Therefore, by mathematical induction, $\mathrm{g}^{\mathrm{i}}(\perp) \subseteq \mathrm{v}$ for all $i \geq 0$.

So v is an upper bound for $\left\{g^{i}(\perp) \mid i \geq 0\right\}$.
Hence $u \subseteq v$, since u is the least upper bound for $\left\{g^{i}(\perp) \mid i \geq 0\right\}$.

Corollary: Every continuous functional $F:(A \rightarrow B) \rightarrow(A \rightarrow B)$, where A and B are domains, has a least fixed point, $F_{f p}: A \rightarrow B$, which can be taken as the meaning of the (recursive) definition corresponding to F.

Example

Consider the functional $\mathrm{G}:(\mathrm{N} \rightarrow \mathrm{N}) \rightarrow(\mathrm{N} \rightarrow \mathrm{N})$ where
$\mathrm{G} \mathrm{gn}=$ if $\mathrm{n}=0$ then 1 else if $\mathrm{n}=1$ then $\mathrm{g}(3)-12$

$$
\text { else } 4 n+g(n-2)
$$

that corresponds to the recursive definition $\mathrm{g}(\mathrm{n})=$ if $\mathrm{n}=0$ then 1 else if $\mathrm{n}=1$ then $\mathrm{g}(3)-12$ else $4 n+g(n-2)$
(\dagger
Contemplate the ascending sequence

$$
\perp \subseteq \mathrm{G}(\perp) \subseteq \mathrm{G}^{2}(\perp) \subseteq \mathrm{G}^{3}(\perp) \subseteq \mathrm{G}^{4}(\perp) \subseteq \ldots
$$

and its least upper bound.
Use the abbreviation $\mathrm{g}_{\mathrm{k}}=\left(\mathrm{G}^{\mathrm{k}} \perp\right)$ for $\mathrm{k} \geq 0$:

$$
\begin{aligned}
& g_{0}(n)=G^{0} \perp n=\perp(n) \\
& g_{1}(n)=G \perp n=G g_{0} n \\
& g_{2}(n)=G(G \perp) n=G g_{1} n \\
& g_{3}(n)=G^{3} \perp n=G g_{2} n
\end{aligned}
$$

Now calculate a few terms in the ascending chain

$$
\mathrm{g}_{0} \subseteq \mathrm{~g}_{1} \subseteq \mathrm{~g}_{2} \subseteq \mathrm{~g}_{3} \subseteq \ldots
$$

Note Property

$a+($ if b then c else $d)=$ $=$ if b then $a+c$ else $a+d$
$\mathrm{g}_{3}(\mathrm{n})=\mathrm{G}^{3} \perp \mathrm{n}=\mathrm{G}_{\mathrm{g}}^{2} \mathrm{n}$
$=$ if $n=0$ then 1 else if $n=1$ then $g_{2}(3)-12$ else $4 n+g_{2}(n-2)$
= if $n=0$ then 1 else if $n=1$ then $\perp-12$ else $4 n+$ (if $n-2=0$ then 1 else if $n-2=1$ then \perp else if $n-2=2$ then 9 else \perp)
$=$ if $n=0$ then 1 else if $n=1$ then \perp else (if $n=2$ then $4 n+1$
else if $n=3$ then $4 n+\perp$ else if $n=4$ then $4 n+9$ else $4 n+\perp$)
$=$ if $n=0$ then 1 else if $\mathrm{n}=1$ then \perp else if $n=2$ then 9
else if $n=3$ then \perp else if $n=4$ then 25 else \perp
$\mathrm{go}(\mathrm{n})=\mathrm{G}^{0} \perp \mathrm{n}=\perp(\mathrm{n})=\perp$ for $\mathrm{n} \in \mathrm{N}$, the everywhere undefined function.
$g_{1}(\mathrm{n})=\mathrm{G} \perp \mathrm{n}=\mathrm{G} \mathrm{g}_{0} \mathrm{n}$
$=$ if $n=0$ then 1 else if $n=1$ then $\mathrm{go}_{\mathrm{o}}(3)-12$
else $4 \mathrm{n}+\mathrm{go}_{0}(\mathrm{n}-2)$
= if $n=0$ then 1 else if $n=1$ then $\perp(3)-12$
else $4 n+\perp(n-2)$
= if $n=0$ then 1 else \perp

```
g}(\textrm{n})=\mp@subsup{G}{}{2}\perp\textrm{n}=\textrm{G}\mp@subsup{g}{1}{}\textrm{n
    = if n=0 then 1 else if n=1 then g1(3)-12
                                    else 4n+g1(n-2)
    = if n=0 then 1 else if n=1 then }\perp-1
        else 4n+(if n-2=0 then 1 else \perp)
    = if n=0 then 1 else if n=1 then }
        else (if n=2 then 4n+1 else \perp)
    = if n=0 then 1 else if n=1 then }
                else if n=2 then 9 else }
```

```
\(g_{4}(n)=G^{4} \perp n=G g_{3} n\)
    \(=\) if \(n=0\) then 1 else if \(n=1\) then \(g_{3}(3)-12\)
        else \(4 n+g_{3}(n-2)\)
    \(=\) if \(n=0\) then 1 else if \(n=1\) then \(\perp-12\)
        else \(4 \mathrm{n}+\) (if \(\mathrm{n}-2=0\) then 1
                                    else if \(n-2=1\) then \(\perp\)
                                else if \(\mathrm{n}-2=2\) then 9
                                else if \(n-2=3\) then \(\perp\)
                                    else if \(n-2=4\) then 25
                                    else \(\perp\) )
    = if \(n=0\) then 1 else if \(n=1\) then \(\perp\)
        else (if \(n=2\) then \(4 n+1\)
            else if \(n=3\) then \(4 n+\perp\)
                else if \(n=4\) then \(4 n+9\)
                else if \(n=5\) then \(4 n+\perp\)
                    else if \(n=6\) then \(4 n+25\)
                            else \(4 \mathrm{n}+\perp\) )
        = if \(\mathrm{n}=0\) then 1
        else if \(n=1\) then \(\perp\)
        else if \(\mathrm{n}=2\) then 9
            else if \(\mathrm{n}=3\) then \(\perp\)
                else if \(\mathrm{n}=4\) then 25
                else if \(n=5\) then \(\perp\)
                    else if \(n=6\) then 49 else \(\perp\)
```

A pattern seems to be developing.

Lemma: For all $i \geq 0$,
$g_{i}(\mathrm{n})=$
if $\mathrm{n}<2 \mathrm{i}$ then (if $\operatorname{even}(\mathrm{n})$ then $(\mathrm{n}+1)^{2}$ else \perp) else \perp.

Proof: The proof proceeds by induction on i.
a) By the previous computations, for $i=0$,

$$
\mathrm{go}(\mathrm{n})=\perp=
$$

if $n<2 \cdot 0$ then
(if even(n) then $(n+1)^{2}$ else \perp) else \perp
b) As the induction hypothesis, assume that $\mathrm{gi}(\mathrm{n})=$
if $\mathrm{n}<2 \mathrm{i}$ then
(if even(n) then $(\mathrm{n}+1)^{2}$ else \perp) else \perp, for any arbitrary $\mathrm{i} \geq 0$.

Then $g_{i+1}(n)=G g_{i} n$
$=$ if $n=0$ then 1 else if $\mathrm{n}=1$ then $\mathrm{g}_{\mathrm{i}}(3)$-12 else $4 \mathrm{n}+\mathrm{g}_{\mathrm{i}}(\mathrm{n}-2)$

The least upper bound of the ascending chain $g_{0} \subseteq g_{1} \subseteq g_{2} \subseteq g_{3} \subseteq \ldots$, where
$\mathrm{gi}_{\mathrm{i}}(\mathrm{n})=$ if $\mathrm{n}<2 \mathrm{i}$ then (if even (n) then $(\mathrm{n}+1)^{2}$ else \perp) else \perp,
must be defined (not \perp) for any n where some g_{i} is defined, and must take the value $(\mathrm{n}+1)^{2}$ there.

Hence the least upper bound is

$$
\begin{aligned}
\mathrm{G}_{\mathrm{fp}}(\mathrm{n}) & =\left(l u b\left\{\mathrm{~g}_{\mathrm{i}} \mid \mathrm{i} \geq 0\right\}\right) \mathrm{n} \\
\quad= & \left(\operatorname{lub}\left\{\mathrm{G}^{\mathrm{i}} \perp \mid \mathrm{I} \geq 0\right\}\right) \mathrm{n} \\
\quad= & \text { if } \operatorname{even}(\mathrm{n}) \text { then }(\mathrm{n}+1)^{2} \text { else } \perp \text { for all } \mathrm{n} \in \mathrm{~N},
\end{aligned}
$$

and this function can be taken as the meaning of the original recursive definition.

Note that the function $\mathrm{h}=(\mathrm{n}+1)^{2}$ is also a fixed point for G.
It is more defined than G_{fp}.
In fact, $\mathrm{G}_{\mathrm{fp}} \subseteq \mathrm{h}$.
$=$ if $n=0$ then 1
else if $n=1$ then $\perp-12$
else $4 n+$ (if $n-2<2 i$ then (if even($\mathrm{n}-2$) then ($\mathrm{n}-1)^{2}$
else \perp) else \perp)
= if $n=0$ then 1
else if $n=1$ then \perp
else (if $\mathrm{n}<2 \mathrm{i}+2$
then (if even(n-2) then $4 \mathrm{n}+(\mathrm{n}-1)^{2}$ else $4 n+\perp$) else $4 n+\perp$)
= if $n=0$ then 1
else if $n=1$ then \perp
else if $n<2(i+1)$
then (if $\operatorname{even}(\mathrm{n})$ then $(\mathrm{n}+1)^{2}$
else \perp) else \perp
$=$ if $n<2(i+1)$
then (if even(n) then $(\mathrm{n}+1)^{2}$ else \perp) else \perp
Therefore our pattern for the gi_{i} is correct.
fix
The procedure for computing a least fixed point for a functional can be described as an operator on functions $\mathrm{F}: \mathrm{D} \rightarrow \mathrm{D}$:

$$
\begin{aligned}
& \text { fix : }(\mathrm{D} \rightarrow \mathrm{D}) \rightarrow \mathrm{D} \text { where } \\
& \text { fix } \mathrm{F}=\operatorname{lub}\left\{\mathrm{F}^{\mathrm{i}}(\perp) \mathrm{li} \geq 0\right\} \in \mathrm{D} .
\end{aligned}
$$

The least fixed point of the functional $F=\lambda f . \lambda n$. if $n=0$ then 5 else if $n=1$ then $f(n+2)$ else $f(n-2)$
can then be expressed as

$$
\mathrm{F}_{\mathrm{fp}}=\text { fix } \mathrm{F} \text {, an element of } \mathrm{D}=\mathrm{N} \rightarrow \mathrm{~N} \text {. }
$$

For $\mathrm{F}:(\mathrm{N} \rightarrow \mathrm{N}) \rightarrow(\mathrm{N} \rightarrow \mathrm{N})$, fix has type

$$
f i x:((\mathrm{N} \rightarrow \mathrm{~N}) \rightarrow(\mathrm{N} \rightarrow \mathrm{~N})) \rightarrow(\mathrm{N} \rightarrow \mathrm{~N}) .
$$

The fixed point operator fix provides a fixed point for any continuous functional, namely, the least defined function with this fixed point property.
Fixed Point Identity: $\mathrm{F}(f i x \mathrm{~F})=f i x \mathrm{~F}$.

Continuous Functionals

Lemma: A constant function f: D \rightarrow C, where $f(x)=k$ for some fixed $k \in C$ and for all $x \in D$, is continuous given either of the two extensions:
a) The natural extension where $f\left(\perp_{D}\right)=\perp_{C}$.
b) The "unnatural" extension where $f\left(\perp_{D}\right)=k$.

Lemma: An identity function $f: D \rightarrow D$, where $f(x)=x$ for all x in a domain D, is continuous.
Proof: If $\mathrm{x}_{1} \subseteq \mathrm{x}_{2} \subseteq \mathrm{x}_{3} \subseteq \ldots$ is an ascending chain in D, it follows that

$$
\mathrm{f}\left(\mid u b\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}\right)=\operatorname{lub}\left\{\mathrm{x}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}=\operatorname{lub}\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\} .
$$

Conditional Expression Function:

Natural extension of "if" is too restrictive.

Lazy if

if $(a, b, c)=$ if a then b else c. where if : TxDxD \rightarrow D for some domain D and $\mathrm{T}=\{\perp$, true, false $\}$
(if true then b else c) $=b$ for any $b, c \in D$ (if false then b else c) $=c$ for any $b, c \in D$ (if \perp then b else c) $=\perp_{D}$ for any $b, c \in D$

Lemma: The uncurried "if" function as defined above is continuous.
Proof: Consider three cases.

Lemma: The composition of continuous functions is continuous, namely if f : $\mathrm{C}_{1} \times \mathrm{C}_{2} \mathrm{x} \ldots \mathrm{xC}_{\mathrm{n}} \rightarrow \mathrm{C}$ is continuous and $\mathrm{g}_{\mathrm{i}}: \mathrm{D}_{\mathrm{i}} \rightarrow \mathrm{C}_{\mathrm{i}}$ is continuous for each $i, 1 \leq i \leq n$, then f 。
$<g_{1}, g_{2}, \ldots, g_{n}>: D_{1} \times D_{2} x \ldots x D_{n} \rightarrow C$, defined by $\mathrm{f} \circ\left(\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{n}}\right)<\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}>=$ $\mathrm{f}<\mathrm{g}_{1}\left(\mathrm{x}_{1}\right), \mathrm{g}_{2}\left(\mathrm{x}_{2}\right), \ldots, \mathrm{g}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}\right)>$
is also continuous.
Proof: Exercise.

Part 1: $\operatorname{lub}\left\{F\left(\mathrm{f}_{\mathrm{i}}\right) \mid i \geq 1\right\} \subseteq \mathrm{F}\left(\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\}\right)$.
For each $i \geq 1, \mathrm{f}_{\mathrm{i}} \subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\}$.
Since F_{1} is monotonic, $F_{1}\left(\mathrm{f}_{\mathrm{i}}\right) \subseteq \mathrm{F}_{1}\left(\mid u b\left\{\mathrm{f}_{\mathrm{i}} \mid i \geq 1\right\}\right)$, which means that
$\mathrm{F}_{1} \mathrm{f}_{\mathrm{i}} \mathrm{d} \subseteq \mathrm{F}_{1}$ lub\{ $\left.\mathrm{f}_{\mathrm{j}} \mathrm{li} \geq 1\right\} \mathrm{d}$ for each $\mathrm{d} \in \mathrm{D}$.
Since f_{j} is monotonic, $f_{i}\left(F_{1} f_{i} d\right) \subseteq f_{i}\left(F_{1} \operatorname{lub}\left\{f_{j} \mid i \geq 1\right\} d\right)$.
But $F f_{i} d=f_{i}<F_{1} f_{i} d>$ and
$\mathrm{f}_{\mathrm{i}}<\mathrm{F}_{1} \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mid \mathrm{i} \geq 1\right\} \mathrm{d}>\subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\}<\mathrm{F}_{1} \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \mid \geq 1\right\} \mathrm{d}>$.
Therefore, $\mathrm{F} \mathrm{f}_{\mathrm{i}} \mathrm{d} \subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\}<\mathrm{F}_{1}$ lub $\left\{\mathrm{f}_{\mathrm{i}} \mathrm{l} i \geq 1\right\} \mathrm{d}>$ for each $i \geq 1$ and $d \in D$.
So, $\operatorname{lub}\left\{F\left(f_{i}\right) \operatorname{li} \geq 1\right\} d=\operatorname{lub}\left\{F f_{i} d l i \geq 1\right\} \subseteq$ lub $\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\}<\mathrm{F}_{1}$ lub $\left\{\mathrm{f}_{\mathrm{i}} \mid \geq 1\right\} \mathrm{d}>=\mathrm{F}$ lub $\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\} \mathrm{d}$ for $\mathrm{d} \in \mathrm{D}$.

Part 2: $\mathrm{F}\left(\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{i} \geq 1\right\}\right) \subseteq \operatorname{lub}\left\{\mathrm{F}\left(\mathrm{f}_{\mathrm{i}}\right) \mid \mathrm{i} \geq 1\right\}$.
For any $\mathrm{d} \in \mathrm{D}, \mathrm{F}$ lub $\left\{\mathrm{f}_{\mathrm{i}} \mid i \geq 1\right\} \mathrm{d}$
$=\operatorname{lub}\left\{\mathrm{f}_{\mathrm{i}} \mathrm{l} \geq 1\right\}<\mathrm{F}_{1} \operatorname{lub}\left\{\mathrm{f}_{\mathrm{j}} \mid \mathrm{j} \geq 1\right\} \mathrm{d}>$ by defn of F ,
$=\operatorname{lub}\left\{\left\{_{\mathrm{j}} \mid \mathrm{i} \geq 1\right\}\left(\mid u b\left\{\mathrm{~F}_{1}\left(\mathrm{f}_{\mathrm{j}}\right) \mathrm{j} \geq 1\right\} \mathrm{d}\right)\right.$ since F_{1} is cont,
$=\operatorname{lub}\left\{\left\langle u b_{i}\left\{\mathrm{f}_{\mathrm{i}} \mid i \geq 1\right\}\left\langle\left\{\mathrm{F}_{1}\left(\mathrm{f}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} \mathrm{d}>\mathrm{i} \geq 1\right\}\right.\right.$
since lub\{ $\left.\mathrm{f}_{\mathrm{i}} \mathrm{l} \geq 1\right\}$ is continuous
$=\operatorname{lub}\left\{l u b\left\{f_{i}\left(\left\{\mathrm{~F}_{1}\left(\mathrm{f}_{\mathrm{j}}\right) \mid \mathrm{j} \geq 1\right\} \mathrm{d}\right)\right\} \mid i \geq 1\right\}$
by definition of lub\{ffili 1$\}$. \dagger

If $\mathrm{j} \leq \mathrm{i}, \quad \mathrm{f}_{\mathrm{j}} \subseteq \mathrm{f}_{\mathrm{i}}$,
$F_{1} f_{j} \subseteq F_{1} f_{i}$ since F_{1} is monotonic,
$F_{1} f_{j} d \subseteq F_{1} f_{i} d$ for each $d \in D$, and
$\mathrm{f}_{\mathrm{i}}<\mathrm{F}_{1} \mathrm{f}_{\mathrm{j}} \mathrm{d}>\subseteq \mathrm{f}_{\mathrm{i}}<\mathrm{F}_{1} \mathrm{f}_{\mathrm{i}} \mathrm{d}>$ since f_{i} is monotonic.
If $\mathrm{i}<\mathrm{j}, \mathrm{f}_{\mathrm{i}} \subseteq \mathrm{f}_{\mathrm{j}}$, and
$f_{i}<F_{1} f_{j} d>\subseteq f_{j}<F_{1} f_{j} d>$ for each $d \in D$
by the meaning of \subseteq.
So, $\mathrm{f}_{\mathrm{i}}<\mathrm{F}_{1} \mathrm{f}_{\mathrm{j}} \mathrm{d}>\subseteq \operatorname{lub}\left\{\mathrm{f}_{\mathrm{n}}\left(\mathrm{F}_{1} \mathrm{f}_{\mathrm{n}} \mathrm{d}\right) \mid \mathrm{n} \geq 1\right\}$
for each $\mathrm{i}, \mathrm{j} 1$.
But $/ u v_{n}\left\{f_{n}\left(F_{1} f_{n} d\right)\right\}=l u b_{n}\left\{F f_{n} d l i \geq 1\right\}$ $=\| u b_{n}\left\{F\left(f_{n}\right) \mid i \geq 1\right\} \mathrm{d}$ by the definition of F.
So $f_{i}<F_{1} f_{j} d>\subseteq \operatorname{lub}\left\{F\left(f_{n}\right) \ln \geq 1\right\} d$ for each $\mathrm{i}, \mathrm{j} \geq 1$, and
$l u b\left\{f_{i}<F_{1} f_{j} d>l i \geq 1\right\} \subseteq l u b\left\{F\left(f_{n}\right) \mid n \geq 1\right\} d$ for each $j \geq 1$.

Hence

$l u b\left\{\left|u b\left\{f_{\mathrm{i}}<\mathrm{F}_{1} \mathrm{f}_{\mathrm{j}} \mathrm{d}>\mathrm{i} \geq 1\right\}\right| \mathrm{j} \geq 1\right\} \subseteq \operatorname{lub}\left\{\mathrm{F}\left(\mathrm{f}_{\mathrm{n}}\right) \mid \mathrm{i} \geq 1\right\} \mathrm{d}$.
Combining with \dagger gives
$\mathrm{F}\left(\mid u b\left\{\left\{_{i} i i \geq 1\right\}\right) \mathrm{d} \subseteq \operatorname{lub}_{n}\left\{F\left(f_{n}\right) \mid i \geq 1\right\} \mathrm{d}\right.$.

Theorem: Any functional H defined by the composition of naturally extended functions on elementary domains, constant functions, the identity function, the if-then-else conditional expression, and a function variable f, is continuous.

Proof: The proof follows by induction on the structure of the definition of the functional. The basis is handled by the continuity of natural extensions, constant functions, and the identity function. The induction step relies on the lemmas which state that the composition of continuous functions, possibly involving f, is continuous.

Look at Example 14:

$\mathrm{H}:(\mathrm{N} \rightarrow \mathrm{N}) \rightarrow(\mathrm{N} \rightarrow \mathrm{N})$ where
$\mathrm{H} \mathrm{h} \mathrm{n}=\mathrm{n}+$ if $\mathrm{n}=0$ then 0 else $\mathrm{h}(\mathrm{h}(\mathrm{n}-1)$) $=$ if $n=0$ then n else $n+h(h(n-1))$.

Fixed Points for Nonrecursive Functions

Find the least fixed point for the function $h(n)=n^{3}-3 n$ defined on the integers Z.

First Interpretation:

The natural extension h^{+}of h is a continuous function on the elementary domain $Z \cup\{\perp\}$.
Then the least fixed point of h^{+}may be constructed as the least upper bound of the ascending sequence:

$$
\perp \subseteq \mathrm{h}^{+}(\perp) \subseteq \mathrm{h}^{+}\left(\mathrm{h}^{+}(\perp)\right) \subseteq \mathrm{h}^{+}\left(\mathrm{h}^{+}\left(\mathrm{h}^{+}(\perp)\right)\right) \subseteq \ldots
$$

But $\mathrm{h}+(\perp)=\perp$,
and so $\left(\mathrm{h}^{+}\right)^{\mathrm{k}}(\perp)=\mathrm{h}^{+}\left(\left(\mathrm{h}^{+}\right)^{\mathrm{k}-1}(\perp)\right)=\mathrm{h}^{+}(\perp)=\perp$ for any $\mathrm{k} \geq 1$.
Therefore, lub $\left\{\left(\mathrm{h}^{+}\right)^{\mathrm{k}}(\perp) \mid \mathrm{k} \geq 0\right\}=\operatorname{lub}\{\perp \mathrm{lk} \geq 0\}=\perp$ is the least fixed point.
In fact, h^{+}has four fixed points in $\mathrm{Z} \cup\{\perp\}$:

$$
\begin{aligned}
& h^{+}(0)=0 \\
& h^{+}(2)=2 \\
& h^{+}(-2)=-2 \\
& h^{+}(\perp)=\perp
\end{aligned}
$$

Second Interpretation:

Think of $h(n)=n^{3}-3 n$ as a rule defining a "recursive" function that just has no actual recursive call of h.
The corresponding functional
$H:(Z \rightarrow Z) \rightarrow(Z \rightarrow Z)$ is defined by the rule:
$\mathrm{Hhn}=\mathrm{n}^{3}-3 \mathrm{n}$.
A function h satisfies definition $h(n)=n^{3}-3 n$ if and only if it is a fixed point of H , that is $\mathrm{Hh}=\mathrm{h}$.
The fixed point construction:

$$
\begin{gathered}
\mathrm{H}^{0} \perp \mathrm{n}=\perp(\mathrm{n})=\perp \\
\mathrm{H}^{1} \perp \mathrm{n}=\mathrm{n}^{3}-3 \mathrm{n} \\
\mathrm{H}^{2} \perp \mathrm{n}=\mathrm{n}^{3}-3 n \\
\mathrm{H}^{3} \perp \mathrm{n}=\mathrm{n}^{3}-3 \mathrm{n} \\
: \\
\mathrm{H}^{\mathrm{k}} \perp \mathrm{n}=\mathrm{n}^{3}-3 \mathrm{n}
\end{gathered}
$$

Therefore, the least fixed point is $\operatorname{lub}\left\{H^{k}(\perp) \mid k \geq 0\right\}=\lambda n . n^{3}-3 n$, which follows the same definition rule as the original function h.

Revisiting Denotational Semantics

The recursive definition
execute \llbracket while E do $\mathrm{C} \rrbracket$ sto $=$ if evaluate 【E】】 sto＝bool（true） then execute 【while E do C】（execute 【C】 sto） else sto
violates the principle of compositionality．
The function execute 【while E do C】 satisfies the recursive definition above if and only if it is a fixed point of the functional
$\mathrm{W} \mathrm{f} \mathrm{s}=$ if evaluate $\llbracket \mathrm{E} \rrbracket \mathrm{s}=$ boo／（true）
then $f($ execute $\llbracket C \rrbracket \mathrm{~s})$ else s
$=$ if evaluate $\llbracket \mathbb{E} \rrbracket \mathrm{s}=$ bool（true）
then（ f oexecute $\llbracket \subset \mathbb{C}$ ）s else s．
We obtain a nonrecursive and compositional definition of the meaning of a while command by means of
execute $\llbracket w h i l e \mathrm{E}$ do $\mathrm{C} \rrbracket=f i x \mathrm{~W}$ ．

We gain insight into both the while command and fixed point semantics by constructing a few terms in the ascending chain whose least upper bound is fix W ，

$$
\begin{aligned}
\mathrm{W}^{0} \perp \subseteq & \mathrm{~W}^{1} \perp \subseteq \mathrm{~W}^{2} \perp \subseteq \mathrm{~W}^{3} \perp \subseteq \ldots \\
& \text { where fix } \mathrm{W}=\operatorname{lub}\left\{\mathrm{W}^{\mathrm{i}} \perp \mathrm{l} i \geq 0\right\} .
\end{aligned}
$$

The fixed point construction for W：

$$
\begin{aligned}
& \mathrm{W}^{0} \perp \mathrm{~s}=\perp \\
& \mathrm{W}^{1} \perp \mathrm{~s}=\mathrm{W}\left(\mathrm{~W}^{0} \perp\right) \mathrm{s} \\
&=\text { if evaluate } \llbracket \mathrm{E} \rrbracket \mathrm{~s}=\text { bool(true) } \\
& \text { then } \perp(\text { execute } \llbracket \mathrm{C} \rrbracket \mathrm{~s}) \text { else } \mathrm{s} \\
&=\text { if evaluate } \llbracket \mathrm{E} \rrbracket \mathrm{~s}=\text { bool(true) } \\
& \text { then } \perp \text { else } \mathrm{s}
\end{aligned}
$$

Let exC stand for the function execute $\llbracket \mathbb{C} \rrbracket$ ．

```
    = if evaluate \E\s = bool(true)
```

 = if evaluate \E\s = bool(true)
 then (if evaluate \llbracketE\rrbracket (exC s) = bool(true)
 then (if evaluate \llbracketE\rrbracket (exC s) = bool(true)
 then (if evaluate \llbracketE\rrbracket (exC'2 s) = bool(true)
 then (if evaluate \llbracketE\rrbracket (exC'2 s) = bool(true)
 then }\perp\mathrm{ else (exC
 then }\perp\mathrm{ else (exC
 else (exC s))
 else (exC s))
 else s
 else s
 W4
W4
if evaluate \llbracketE\rrbrackets = bool(true)
if evaluate \llbracketE\rrbrackets = bool(true)
then (if evaluate \E\rrbracket (exC s) = bool(true)
then (if evaluate \E\rrbracket (exC s) = bool(true)
then (if evaluate \llbracketE\rrbracket (exC'2 s) = bool(true)
then (if evaluate \llbracketE\rrbracket (exC'2 s) = bool(true)
then (if evaluate \llbracketE\rrbracket(exC
then (if evaluate \llbracketE\rrbracket(exC
then }\perp\mathrm{ else (exC` s)) then }\perp\mathrm{ else (exC` s))
else (exC2 s))
else (exC2 s))
else (exC s))
else (exC s))
else s

```
        else s
```

$W^{2} \perp s=W\left(W^{1} \perp\right) s$
$=$ if evaluate $\llbracket E \rrbracket \mathrm{~s}=$ bool（true）
then $W^{1} \perp(e x C s)$ else s
$=$ if evaluate $\llbracket E \rrbracket s=$ bool（true） then
（if evaluate $\llbracket \mathbb{E} \rrbracket(e x C$ s）$=$ bool（true）
then \perp else exC s）
else s
$W^{3} \perp \mathrm{~s}=\mathrm{W}\left(\mathrm{W}^{2} \perp\right) \mathrm{s}$
$=$ if evaluate $\llbracket \mathrm{E} \rrbracket \mathrm{s}=$ bool（true） then $\mathrm{W}^{2} \perp(\mathrm{exC} s)$ else s
$=$ if evaluate $\llbracket \mathrm{E} \rrbracket \mathrm{s}=$ bool（true）
then（if evaluate 【E】（exC s）＝bool（true） then
（if evaluate $\llbracket E \rrbracket(e x C(e x C ~ s))=b o o l($ true $)$
then \perp else exC（exC s））
else（exC s））
else s

In general，
$W^{k+1} \perp \mathrm{~s}=\mathrm{W}\left(\mathrm{W}^{\mathrm{k}} \perp\right) \mathrm{s}$

$$
=\text { if evaluate } \mathbb{E} \rrbracket \mathrm{S} \text { s = bool(true) }
$$

$$
\text { then (if evaluate } \llbracket \mathrm{E} \rrbracket(\mathrm{exC} \mathrm{~s})=b o o l(\text { true })
$$

$$
\text { then (if evaluate } \llbracket E \rrbracket\left(e x C^{2} s\right)=\text { bool(true) }
$$

then（if evaluate $\llbracket \mathrm{E} \rrbracket\left(\mathrm{exC}^{3} \mathrm{~s}\right)=$ bool（true）

$$
\begin{aligned}
& \text { then } \left.\perp \text { else }\left(e x C^{k} s\right)\right) \\
& \text { else } \left.\left(e x C^{k-1} s\right)\right)
\end{aligned}
$$

else（ $\left.\mathrm{exC}^{2} \mathrm{~s}\right)$ ）
else（exC s））
else s
The function $\mathrm{W}^{\mathrm{k}+1} \perp$ allows the body C of the while to execute up to k times．
Thus this approximation to the meaning of the while command can handle any instance of a while with at most k iterations of the body．
Any application of a while command will have some finite number of iterations，say n ． Therefore its meaning is subsumed in the approximation $\mathrm{W}^{\mathrm{n}+1} \perp$ ．

The least upper bound of this ascending sequence provides semantics for the while command：
execute $\llbracket w h i l e \mathrm{E}$ do $\mathrm{C} \rrbracket=$ fix $\mathrm{W}=\operatorname{lub}\left\{\mathrm{W}^{i} \perp \| \geq 0\right\}$ ．

View the definition of execute 【while E do C】 in terms of the fixed point identity， $\mathrm{W}($ fix W$)=$ fix W ，where
W fs＝if evaluate $\llbracket E \rrbracket \mathrm{~s}=$ bool（true）
then $f($ execute $\llbracket \mathbb{C} \rrbracket \mathrm{s})$ else s ．
In this context， execute \llbracket while E do C】＝fix W
Now define loop＝fix W．Then
execute 【while E do C】

$$
\begin{aligned}
& =\text { loop } \\
& \text { where loop } \mathrm{s}=(\mathrm{W} \text { loop }) \mathrm{s} \\
& =\text { loop where loop } \mathrm{s}= \\
& \text { if evaluate } \llbracket \mathrm{E} \rrbracket \mathrm{~s}=\text { bool(true }) \\
& \text { then loop }(\text { execute } \llbracket \mathrm{C} \rrbracket \mathrm{~s}) \text { else } \mathrm{s} .
\end{aligned}
$$

This approach produces the compositional definition of execute 【while E do C】used in the specification of Wren，Figure 9．11．

Chapter 10

Fixed Point Induction

Induction on the construction of the least fixed point $l u b\left\{F^{\mathrm{i}} \perp \mathrm{I} i \geq 0\right\}$ ．

Let $\Phi(f)$ be a predicate that describes a property for an arbitrary function f defined recursively．
To show Φ holds for the least fixed point $F_{f p}$ of the functional F corresponding to a recursive definition of f ，two conditions are needed：
Part 1：Show by induction that Φ holds for each element in the ascending chain

$$
\perp \subseteq \mathrm{F} \perp \subseteq \mathrm{~F}^{2} \perp \subseteq \mathrm{~F}^{3} \perp \subseteq \ldots \text { and }
$$

Part 2：Show that Φ remains true when the least upper bound is taken．

Part 2 is handled by defining a class of predi－ cates with the necessary property．
A predicate is called admissible if it has the property that whenever the predicate hold for an ascending chain of functions，it also must hold for the least upper bound of that chain．

Theorem：Any finite conjunction of inequalities of the form $\alpha(F) \subseteq \beta(F)$ ，where α and β are con－ tinuous functionals，is an admissible predicate． This includes terms of the form $\alpha(F)=\beta(F)$ ．
Proof：See［Manna72］．

Mathematical induction is used to verify the condition in Part 1：
Given a functional F：$(\mathrm{D} \rightarrow \mathrm{D}) \rightarrow(\mathrm{D} \rightarrow \mathrm{D})$ for some domain D and admissible predicate $\Phi(f)$ ，show：
a）$\Phi(\perp)$ holds where $\perp: \mathrm{D} \rightarrow \mathrm{D}$ ，and
b）for any $i \geq 0$ ，if $\Phi\left(F^{i}(\perp)\right)$ ，then $\Phi\left(F^{i+1}(\perp)\right)$ ．
An alternate version of condition b ）is：
b^{\prime} ）for any f： $\mathrm{D} \rightarrow \mathrm{D}$ ，if $\Phi(\mathrm{f})$ ，then $\Phi(\mathrm{F}(\mathrm{f})$ ）．
Either formulation is sufficient to infer that the predicate Φ holds for every function in the ascending chain $\left\{F^{\mathrm{i}} \perp \mathrm{l} i \geq 0\right\}$ ．

Example

$\mathrm{H} \mathrm{h} \mathrm{n}=$ if $\mathrm{n}=0$ then 0 else $(2 \mathrm{n}-1)+\mathrm{h}(\mathrm{n}-1)$ with least fixed point $H_{\text {fp }}$.
Prove that $H_{f p} \subseteq \lambda n . n^{2}$.
Let $\Phi(\mathrm{f})$ be the predicate $\mathrm{f} \subseteq \lambda \mathrm{n} . \mathrm{n}^{2}$.
a) Since $\perp \subseteq \lambda \mathrm{n} . \mathrm{n}^{2}, \Phi(\perp)$ holds.
b') Suppose $\Phi(\mathrm{h})$, that is, $\mathrm{h} \subseteq \lambda \mathrm{n} . \mathrm{n}^{2}$.
Then $\mathrm{Hh} \mathrm{n}=$ if $\mathrm{n}=0$ then 0 else $(2 \mathrm{n}-1)+\mathrm{h}(\mathrm{n}-1)$
\subseteq if $n=0$ then 0 else $(2 n-1)+(n-1)^{2}$
= if $n=0$ then 0 else n^{2}
$=\mathrm{n}^{2}$ for $\mathrm{n} \geq 0$.
Therefore, $\Phi(\mathrm{H}(\mathrm{h}))$ holds, and by fixed point induction $\mathrm{H}_{\mathrm{fp}} \subseteq \lambda \mathrm{n} . \mathrm{n}^{2}$.

Paradoxical Combinator

An implementation of the fixed-point operator fix in the (untyped) lambda calculus:
define $\mathrm{Y}=\lambda \mathrm{f} .(\lambda \mathrm{x} . \mathrm{f}(\mathrm{xx}))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} \mathrm{x}))$
or in the lambda calculus evaluator
define $Y=(L f((L x(f(x x)))(L x(f(x x)))))$.
Reduction proves \mathbf{Y} satisfies fixed-point identity.

$$
\begin{aligned}
Y E & =(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) E \\
& \Rightarrow(\lambda x \cdot E(x x))(\lambda x \cdot E(x x)) \\
& \Rightarrow E((\lambda x \cdot E(x x))(\lambda x \cdot E(x x))) \\
& \Rightarrow E(\lambda h \cdot(\lambda x \cdot h(x x))(\lambda x \cdot h(x x)) E) \\
& \Rightarrow E(Y E) .
\end{aligned}
$$

Calculation follows normal order reduction.
Applicative order strategy leads to a nonterminating reduction:

$$
\begin{aligned}
Y E= & (\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) E \\
& \Rightarrow(\lambda f \cdot f((\lambda x \cdot f(x x))(\lambda x \cdot f(x x)))) E \\
& \Rightarrow(\lambda f \cdot f(f((\lambda x \cdot f(x x))(\lambda x \cdot f(x \mathbf{x}))))) E \\
& \Rightarrow \ldots
\end{aligned}
$$

Fixed-Point Identity

$$
\mathrm{F}(f i x \mathrm{~F})=f i x \mathrm{~F}
$$

Add a reduction rule that carries out effect of fixed-point identity from right to left to replicate the functional F -namely, fix $\mathrm{F} \Rightarrow \mathrm{F}(f i x \mathrm{~F})$.

Consider this definition of a function involving powers of 2 with its associated functional:
two $\mathrm{n}=$ if $\mathrm{n}=0$ then 1 else $2 \bullet$ two $(\mathrm{n}-1)+1$
and
Two $=\lambda h . \lambda n$. if $n=0$ then 1 else $2 \bullet h(n-1)+1$.
The least fixed point of Two, (fix Two), serves as the definition of the two function.
The function (fix Two) is not recursive and can be "reduced" using the fixed-point identity $f i x$ Two \Rightarrow Two (fix Two).

The replication of the function encoded in the fix operator enables a reduction to create as many copies of the original function as it needs.
(fix Two) 4
\Rightarrow (Two (fix Two)) 4
$\Rightarrow(\lambda \mathbf{h} \cdot \lambda \mathrm{n}$. if $\mathrm{n}=0$ then 1 else $2 \cdot h(n-1)+1)(f i x$ Two) 4
$\Rightarrow(\boldsymbol{\lambda} \mathbf{n}$. if $\mathrm{n}=0$ then 1 else $2 \bullet(f i x$ Two $)(n-1)+1) 4$
\Rightarrow if $4=0$ then 1 else $2 \bullet(f i x$ Two $)(4-1)+1$
$\Rightarrow 2 \bullet((f i x ~ T w o) ~ 3)+1$
$\Rightarrow 2 \bullet(($ Two $(f i x$ Two $)) 3)+1$
$\Rightarrow 2 \bullet((\lambda h . \lambda n$. if $n=0$ then 1
else $2 \bullet h(n-1)+1)($ fix Two) 3) +1
$\Rightarrow 2 \bullet((\lambda n$. if $n=0$ then 1
else $2 \bullet($ fix Two $)(n-1)+1) 3)+1$
$\Rightarrow 2 \bullet(($ if $3=0$ then 1 else $2 \bullet($ fix Two $)(3-1))+1)+1$
$\Rightarrow 2 \bullet(2 \bullet((f i x ~ T w o) ~ 2)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(($ Two $($ fix Two $)) 2)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet((\lambda h . \lambda n$. if $n=0$ then 1 else $2 \cdot \mathrm{~h}(\mathrm{n}-1)+1)($ fix Two) 2$)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet((\lambda n$. if $n=0$ then 1 else $2 \cdot($ fix Two $)(n-1)+1) 2)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet($ if $2=0$ then 1
else $2 \bullet((f i x$ Two $)(2-1))+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(($ fix Two $) 1))+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(($ Two $(f i x$ Two $)) 1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet((\lambda h) \lambda n$. if $n=0$ then 1
else $2 \bullet h(n-1)+1)($ fix Two) 1) +1$)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet((\lambda \mathbf{n}$. if $\mathrm{n}=0$ then 1
else $2 \bullet($ fix Two $)(\mathrm{n}-1)+1) \mathbf{1})+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet($ if $1=0$ then 1
else $2 \bullet((f i x$ Two $)(1-1))+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet((f i x$ Two $) 0)+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet(($ Two $(f i x ~ T w o)) ~ 0)+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet((\lambda) . \lambda n$. if $n=0$ then 1
else $2 \bullet h(n-1)+1)($ fix Two) 0$)+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet((\lambda n)$ if $n=0$ then 1
else $2 \bullet((f i x$ Two $)(n-1))+1) 0)+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet($ if $0=0$ then 1
else $2 \bullet(($ fix Two $)(0-1))+1)+1)+1)+1)+1$
$\Rightarrow 2 \bullet(2 \bullet(2 \bullet(2 \bullet 1+1)+1)+1)+1=31$

