
271

Chapter 9
DENOTATIONAL SEMANTICS

With formal semantics we give programs meaning by mapping them
into some abstract but precise domain of objects. Using denotational
semantics, we provide meaning in terms of mathematical objects,

such as integers, truth values, tuples of values, and functions. For this rea-
son, denotational semantics was originally called mathematical semantics.

Christopher Strachey and his Programming Research Group at Oxford de-
veloped denotational semantics in the mid 1960s; Dana Scott supplied the
mathematical foundations in 1969. Although originally intended as a mecha-
nism for the analysis of programming languages, denotational semantics has
become a powerful tool for language design and implementation.

In this chapter we take a careful look at denotational semantics. We illus-
trate the methodology by specifying the language of a simple calculator and
three programming languages: (1) Wren, (2) a language with procedures called
Pelican, and (3) a language with goto’s called Gull. The presentation differs
from some of the literature on denotational semantics in that we enhance the
readability of the specifications by avoiding the Greek alphabet and single
character identifiers found in the traditional presentations.

9.1 CONCEPTS AND EXAMPLES

Denotational semantics is based on the recognition that programs and the
objects they manipulate are symbolic realizations of abstract mathematical
objects, for example,

strings of digits realize numbers, and

function subprograms realize (approximate) mathematical functions.

The exact meaning of “approximate” as used here will be made clear in Chap-
ter 10. The idea of denotational semantics is to associate an appropriate
mathematical object, such as a number, a tuple, or a function, with each
phrase of the language. The phrase is said to denote the mathematical ob-
ject, and the object is called the denotation of the phrase.

272 CHAPTER 9 DENOTATIONAL SEMANTICS

Syntactically, a phrase in a programming language is defined in terms of its
constituent parts by its BNF specification. The decomposition of language
phrases into their subphrases is reflected in the abstract syntax of the pro-
gramming language as well. A fundamental principle of denotational seman-
tics is that the definition be compositional. That means the denotation of a
language construct is defined in terms of the denotations of its subphrases.
Later we discuss reasons for having compositional definitions.

Traditionally, denotational definitions use special brackets, the emphatic
brackets [[]], to separate the syntactic world from the semantic world. If p is
a syntactic phrase in a programming language, then a denotational specifi-
cation of the language will define a mapping meaning, so that meaning [[p]] is
the denotation of p—namely, an abstract mathematical entity that models
the semantics of p.

For example, the expressions “2*4”, “(5+3)”, “008”, and “8” are syntactic
phrases that all denote the same abstract object, namely the integer 8. There-
fore with a denotational definition of expressions we should be able to show
that

meaning [[2*4]] = meaning [[(5+3)]] = meaning [[008]] = meaning [[8]] = 8.

Functions play a prominent role in denotational semantics, modeling the
bindings in stores and environments as well as control abstractions in pro-
gramming languages. For example, the “program”

fact(n) = if n=0 then 1 else n*fact(n–1)

denotes the factorial function, a mathematical object that can be viewed as
the set of ordered pairs,

{ <0,1>, <1,1>, <2,2>, <3,6>, <4,24>, <5,120>, <6,720>, … },

and a denotational semantics should confirm this relationship.

A denotational specification of a programming language consists of five com-
ponents, two specifying the syntactic world, one describing the semantic
domains, and two defining the functions that map the syntactic objects to
the semantic objects.

The Syntactic World

Syntactic categories or syntactic domains name collections of syntac-
tic objects that may occur in phrases in the definition of the syntax of the
language—for example,

Numeral, Command, and Expression.

Commonly, each syntactic domain has a special metavariable associated
with it to stand for elements in the domain—for example,

2739.1 CONCEPTS AND EXAMPLES

C : Command

E : Expression

N : Numeral

I : Identifier.

With this traditional notation, the colon means “element of”. Subscripts
will be used to provide additional instances of the metavariables.

Abstract production rules describe the ways that objects from the syn-
tactic categories may be combined in accordance with the BNF definition
of the language. They provide the possible patterns that the abstract
syntax trees of language phrases may take. These abstract production
rules can be defined using the syntactic categories or using the metavariables
for elements of the categories as an abbreviation mechanism.

Command ::= while Expression do Command+

E ::= N | I | E O E | – E

These rules are the abstract productions that were discussed in Chapter 1.
They do not fully specify the details of syntax with respect to parsing
items in the language but simply portray the possible forms of syntactic
constructs that have been verified as correct by some other means.

The Semantic World

Semantic domains are “sets” of mathematical objects of a particular
form. The sets serving as domains have a lattice-like structure that will
be described in Chapter 10. For now we view these semantic domains as
normal mathematical sets and structures—for example,

Boolean = { true, false } is the set of truth values,

Integer = { … , -2, -1, 0, 1, 2, 3, 4, … } is the set of integers, and

Store = (Variable → Integer) consists of sets of bindings (functions
mapping variable names to values).

We use the notation A → B to denote the set of functions with domain A
and codomain B.

The Connection between Syntax and Semantics

Semantic functions map objects of the syntactic world into objects in
the semantic world. Constructs of the subject language—namely elements
of the syntactic domains—are mapped into the semantic domains. These
functions are specified by giving their syntax (domain and codomain),
called their signatures—for example,

274 CHAPTER 9 DENOTATIONAL SEMANTICS

meaning : Program → Store

evaluate : Expression → (Store → Value)

and by using semantic equations to specify how the functions act on
each pattern in the syntactic definition of the language phrases. For ex-
ample,

evaluate [[E1 + E2]] sto = plus(evaluate [[E1]] sto, evaluate [[E2]] sto)

states that the value of an expression “E1 + E2” is the mathematical sum
of the values of its component subexpressions. Note that the value of an
expression will depend on the current bindings in the store, here repre-
sented by the variable “sto”. The function evaluate maps syntactic ex-
pressions to semantic values—namely, integers—using mathematical
operations such as plus. We refer to these operations as auxiliary func-
tions in the denotational definition.

Figure 9.1 contains a complete denotational specification of a simple lan-
guage of nonnegative integer numerals. This definition requires two auxiliary
functions defined in the semantic world, where Number x Number denotes
the Cartesian product.

plus : Number x Number → Number

times : Number x Number → Number.

Syntactic Domains
N : Numeral -- nonnegative numerals

D : Digit -- decimal digits

Abstract Production Rules
Numeral ::= Digit | Numeral Digit

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Semantic Domain
Number = { 0, 1, 2, 3, 4, … } -- natural numbers

Semantic Functions
value : Numeral → Number

digit : Digit → Number

Semantic Equations
value [[N D]] = plus (times(10, value [[N]]), digit [[D]])

value [[D]] = digit [[D]]

digit [[0]] = 0 digit [[3]] = 3 digit [[6]] = 6 digit [[8]] = 8

digit [[1]] = 1 digit [[4]] = 4 digit [[7]] = 7 digit [[9]] = 9

digit [[2]] = 2 digit [[5]] = 5

Figure 9.1: A Language of Numerals

275

We need two syntactic domains for the language of numerals. Phrases in this
language are mapped into the mathematical domain of natural numbers.
Generally we have one semantic function for each syntactic domain and one
semantic equation for each production in the abstract syntax. To distinguish
numerals (syntax) from numbers (semantics), different typefaces are employed.
Note the compositionality of the definition in that the value of a phrase “N D”
is defined in terms of the value of N and the value of D.

As an example of evaluating a numeral according to this denotational defini-
tion, we find the value of the numeral 65:

value [[65]] = plus(times(10, value [[6]]), digit [[5]])
= plus(times(10, digit [[6]]), 5)
= plus(times(10, 6), 5)
= plus(60, 5) = 65

Solely using the specification of the semantics of numerals, we can easily
prove that value [[008]] = value [[8]]:

value [[008]] = plus(times(10, value [[00]]), digit [[8]])
= plus(times(10, plus(times(10, value [[0]]), digit [[0]])), 8)
= plus(times(10, plus(times(10, digit [[0]]), 0)), 8)
= plus(times(10, plus(times(10, 0), 0)), 8)
= 8 = digit [[8]] = value [[8]]

Although the syntactic expression “008” inside the emphatic brackets is writ-
ten in linear form, it actually represents the abstract syntax tree shown in
Figure 9.2 that reflects its derivation

<numeral> ⇒ <numeral> <digit> ⇒ <numeral> <digit> <digit> ⇒
<digit> <digit> <digit> ⇒ 0 <digit> <digit> ⇒ 0 0 <digit> ⇒ 0 0 8.

Numeral

Numeral

Numeral

0

Digit

Digit

0

Digit

8

Figure 9.2: An Abstract Syntax Tree

9.1 CONCEPTS AND EXAMPLES

276 CHAPTER 9 DENOTATIONAL SEMANTICS

The elements of the syntactic world inside of the emphatic brackets are al-
ways abstract syntax trees. We write them in a linear form only for conve-
nience. The abstract production rules will be used to describe the abstract
syntax trees and the concrete syntax to disambiguate them.

Compositionality

The principle of compositionality has a long history in mathematics and the
specification of languages (see the further readings at the end of this chap-
ter). In his book [Tennent91] on the semantics of programming languages,
Tennent suggests three reasons for using compositional definitions:

1. In a denotational definition, each phrase of a language is given a meaning
that describes its contribution to the meaning of a complete program that
contains it. Furthermore, the meaning of each phrase is formulated as a
function of the denotations of its immediate subphrases. As a result,
whenever two phrases have the same denotation, one can be replaced by
the other without changing the meaning of the program. Therefore a
denotational semantics supports the substitution of semantically equiva-
lent phrases.

2. Since a denotational definition parallels the syntactic structure of its BNF
specification, properties of constructs in the language can be verified by
structural induction, the version of mathematical induction introduced
in Chapter 8 that follows the syntactic structure of phrases in the lan-
guage.

3. Compositionality lends a certain elegance to denotational definitions, since
the semantic equations are structured by the syntax of the language.
Moreover, this structure allows the individual language constructs to be
analyzed and evaluated in relative isolation from other features in the
language.

As a consequence of compositionality, the semantic function value is a
homomorphism, which means that the function respects operations. As
an illustration, consider a function H : A → B where A has a binary opera-
tion f : AxA → A and B has a binary operation g : BxB → B. The function
H is a homomorphism if H(f(x,y)) = g(H(x),H(y)) for all x,y∈ A. For the
example in Figure 9.1, the operation f is concatenation and g(m,n) =
plus (times (10, m), n). Therefore value (f(x,y)) = g(value (x),value (y)), which
thus demonstrates that value is a homomorphism.

277

Exercises

1. Using the language of numerals in Figure 9.1, draw abstract syntax
trees for the numerals “5” and “6789”.

2. Use the denotational semantics for numerals to derive the value of “3087”.

3. Define a denotational semantics for the language of numerals in which
the meaning of a string of digits is the number of digits in the string.

4. Define a denotational semantics for the language of octal (base 8) nu-
merals. Use the definition to find the value of “752”.

5. This is a BNF specification (and abstract syntax) of the language of Ro-
man numerals less than five hundred.

Roman ::= Hundreds Tens Units

Hundreds ::= ε | C | CC| CCC | CD

Tens ::= LowTens | XL | L LowTens | XC

LowTens ::= ε | LowTens X

Units ::= LowUnits | IV | V LowUnits | IX

LowUnits ::= ε | LowUnits I

The language of Roman numerals is subject to context constraints that
the number of X’s in LowTens and I’s in LowUnits can be no more than
three. Remember ε represents the empty string.

Provide semantic functions and semantic equations for a denotational
definition of Roman numerals that furnishes the numeric value of each
string in the language. Assume that the context constraints have been
verified by other means.

9.2 A CALCULATOR LANGUAGE

In this section we develop the denotational semantics for the language of the
simple three-function calculator shown in Figure 9.3. A “program” on this
calculator consists of a sequence of keystrokes generally alternating between
operands and operators. The concrete syntax in Figure 9.4 gives those com-
binations that we call legal on the calculator. For instance,

6 + 33 x 2 =

produces the value 78 on the display of the calculator. Observe that unlike
more complex calculators, keystrokes are entered and processed from left to
right, so that the addition is performed before the multiplication.

9.2 A CALCULATOR LANGUAGE

278 CHAPTER 9 DENOTATIONAL SEMANTICS

4

7

6

8

2

0

1 3

9

5

x

–

+

=

Clear

M R

M+

+/–

Figure 9.3: A Three-Function Calculator

In fact calculators usually accept any sequence of key presses, but we have
limited our syntax to those collections that a user is most likely to employ.
We outlaw combinations such as

5 + + 6 = and 88 x +/- 11 + MR MR

that provide no new meaningful calculations although many real calculators
allow them. The Clear key occurs in several productions because a user is
likely to press it at almost any time. The plus-minus key +/- changes the sign
of the displayed value.

<program> ::= <expression sequence>

<expression sequence> ::= <expression>| <expression> <expression sequence>

<expression> ::= <term> | <expression> <operator> <term>

| <expression> <answer> | <expression> <answer> +/-

<term> ::= <numeral> | MR | Clear | <term> +/-

<operator> ::= + | – | x

<answer> ::= M+ | =

<numeral> ::= <digit> | <numeral> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 9.4: Concrete Syntax for the Calculator Language

279

To simplify the definition of the denotational semantics for the calculator, the
abstract syntax in Figure 9.5 considerably reduces the complexity of the
notation while still representing all the key sequences allowed by the con-
crete syntax. Since +/- acts in much the same way as the answer keys, it has
been included with them in the abstract syntax.

Abstract Syntactic Domains
P : Program O : Operator N : Numeral

S : ExprSequence A : Answer D : Digit

E : Expression

Abstract Production Rules
Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression Answer

| Expression Operator Expression

Operator ::= + | – | x

Answer ::= M+ | = | +/-

Numeral ::= see Figure 9.1

Figure 9.5: Abstract Syntax for the Calculator Language

Following the concrete syntax for the calculator language, given the sequence
of keystrokes

10 M+ + 6 +/- = x MR =

a parser will construct the abstract syntax tree shown in Figure 9.6. Notice
that most operations associate to the left because of the way keystrokes are
processed from left to right.

Expression

=

x

610 +/–

Expression

Expression

Expression

Expression

Expression

=

+

MR

M+

Figure 9.6: An Abstract Syntax Tree for 10 M+ + 6 +/- = x MR =

9.2 A CALCULATOR LANGUAGE

280 CHAPTER 9 DENOTATIONAL SEMANTICS

The syntax of the calculator language encompasses six syntactic domains if
we ignore the structure of numerals. In providing semantics for the calcula-
tor we define a semantic function for each of these domains. But before these
functions can be specified, we need to describe the semantic domains into
which they map, and to do so requires that we understand the operation of
the calculator.

Calculator Semantics

The description presented here for the meaning of calculator expressions is
slightly more complicated than it needs to be so that some extensions of the
meaning can be implemented easily. See the exercises at the end of this
section for an alternative model of the calculator. To define the semantics of
the calculator, we use a state that maintains four registers or values to cap-
ture its internal working:

1. An internal accumulator maintains a running total value reflecting the
operations that have been carried out so far.

2. An operator flag indicates the pending operation that will be executed
when another operand is made available.

3. The current display portrays the latest numeral that has been entered,
the memory value that has been recalled using MR, or the total computed
so far whenever the = or M+ key has been pressed.

4. The memory of the calculator contains a value, initially zero; it is con-
trolled by the M+ and MR keys.

Calculator arithmetic will be modeled by several auxiliary functions that carry
out the three basic binary operations and an “identity” operation for the case
when no operator is pending:

plus : Integer x Integer → Integer

minus : Integer x Integer → Integer

times : Integer x Integer → Integer

nop : Integer x Integer → Integer where nop(a,d) = d.

We use the same names for the values of the operator flag and for the auxil-
iary operations, assuming an implicit function that identifies the flag values
with the auxiliary functions. To understand how the state varies under the
control of the keystrokes, consider the calculation in Figure 9.7 and how it
affects these four values.

281

Keystroke Accumulator Operator Flag Display Memory
0 nop 0 0

12 0 nop 12 0

+ 12 plus 12 0

5 12 plus 5 0
+/- 12 plus -5 0

= 12 nop 7 0

x 7 times 7 0

2 7 times 2 0

M+ 7 nop 14 14

123 7 nop 123 14

M+ 7 nop 123 137

MR 7 nop 137 137
+/- 7 nop -137 137

– -137 minus -137 137

25 -137 minus 25 137

= -137 nop -162 137

+ -162 plus -162 137

MR -162 plus 137 137

= -162 nop -25 137

Figure 9.7: Sample Calculation of 12 + 5 +/- = x 2 M+ 123 M+ MR +/- – 25 = + MR =

Although the meaning of a calculator program will be the final integer value
shown on the display, we are also interested in the behavior of the calculator
in response to individual keystrokes and partial results. This meaning de-
pends on the following semantic domains:

Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Operation = { plus, minus, times, nop }

State = Integer x Operation x Integer x Integer.

The Operation domain can be compared to an enumerated type in Pascal.
These four values act as flags inside the calculator by saving the last opera-
tor keystroke. Integer represents the abstract collection of mathematical in-
tegers, and State takes values that are quadruples embodying the internal
accumulator, the pending operation, the display, and the memory. In par-
ticular, observe which entries change the various values in the State tuple:

9.2 A CALCULATOR LANGUAGE

282 CHAPTER 9 DENOTATIONAL SEMANTICS

State tuple value Tokens that may alter the value
Accumulator Clear, +, –, and x
Operator Flag Clear, +, –, x, =, and M+

Display Clear, numeral, =, M+, MR, and +/-
Memory Clear and M+

The trace in Figure 9.7 shows the changing state in response to various
keystrokes.

Semantic Functions

The denotational semantics for this calculator has a semantic function for
each of the syntactic domains.

meaning : Program → Integer

perform : ExprSequence → (State → State)

evaluate : Expression → (State → State)

compute : Operator → (State → State)

calculate : Answer → (State → State)

value : Numeral → Integer -- uses only nonnegative integers

Semantic equations specifying the functions are defined in Figure 9.8, with
one equation for each production rule in the abstract syntax. Inspection of
the semantics for individual keystrokes will provide an understanding of the
calculator operation. The semantic function meaning calls perform on a se-
quence of one or more expressions that makes up a program, giving perform
an initial state (0,nop,0,0) as its argument. An expression sequence is evalu-
ated one expression at a time by composing executions of the evaluate func-
tion. Finally, meaning returns the display value given as a result of evaluat-
ing the last expression in the sequence.

The semantic function evaluate produces a function in State → State as its
result when applied to an expression. The functions compute and calculate
give meaning to operators and “totaling” keys. For example, + computes the
pending operation with the accumulator and display, updating the accumu-
lator and display but leaving the display unchanged. Moreover, plus becomes
the new pending operation. In contrast, = places the computed value into the
display with nop signaling that there is no longer a pending operation.

Observe that MR and +/- act only on the display. Compound keystrokes are
handled as compositions, eliminating the need to give the argument tuple.
The semantic equation, given here as a composition,

evaluate [[E A]] = calculate [[A]] ° evaluate [[E]]

is equivalent to writing
evaluate [[E A]] (a,op,d,m) = calculate [[A]] (evaluate [[E]] (a,op,d,m)).

283

meaning [[P]] = d where perform [[P]](0,nop,0,0) = (a,op,d,m)

perform [[E S]] = perform [[S]] ° evaluate [[E]]

perform [[E]] = evaluate [[E]]

evaluate [[N]] (a,op,d,m) = (a,op,v,m) where v = value [[N]]

evaluate [[MR]] (a,op,d,m) = (a,op,m,m)

evaluate [[Clear]] (a,op,d,m) = (0,nop,0,0)

evaluate [[E1 O E2]] = evaluate [[E2]] ° compute [[O]] ° evaluate [[E1]]

evaluate [[E A]] = calculate [[A]] ° evaluate [[E]]

compute [[+]] (a,op,d,m) = (op(a,d),plus,op(a,d),m)

compute [[–]] (a,op,d,m) = (op(a,d),minus,op(a,d),m)

compute [[x]] (a,op,d,m) = (op(a,d),times,op(a,d),m)

calculate [[=]] (a,op,d,m) = (a,nop,op(a,d),m)

calculate [[M+]] (a,op,d,m) = (a,nop,v,plus(m,v)) where v = op(a,d)

calculate [[+/-]] (a,op,d,m) = (a,op,minus(0,d),m)

value [[N]] = see Figure 9.1

Figure 9.8: Semantic Equations for the Calculator Language

Denotational definitions commonly use this technique of factoring out argu-
ments to semantic equations whenever possible. It was for this reason that
the syntax of evaluate and the other semantic functions are given in a cur-
ried form (see Chapter 5 for a discussion of curried functions)

evaluate : Expression → (State → State)

instead of as an uncurried function acting on a tuple

evaluate : (Expression x State) → State.

A Sample Calculation

As an example of an evaluation according to the definition, consider the se-
ries of keystrokes “2 + 3 =”. The meaning of the sequence is given by

meaning [[2 + 3 =]] = d where perform [[2 + 3 =]](0,nop,0,0) = (a,op,d,m).

The evaluation proceeds as follows:

perform [[2 + 3 =]](0,nop,0,0)

= evaluate [[2 + 3 =]](0,nop,0,0)

= (calculate [[=]] ° evaluate [[2 + 3]]) (0,nop,0,0)

= (calculate [[=]] ° evaluate [[3]] ° compute [[+]] ° evaluate [[2]]) (0,nop,0,0)

9.2 A CALCULATOR LANGUAGE

284 CHAPTER 9 DENOTATIONAL SEMANTICS

= calculate [[=]] (evaluate [[3]] (compute [[+]] (evaluate [[2]] (0,nop,0,0))))

= calculate [[=]] (evaluate [[3]] (compute [[+]] (0,nop,2,0))), since value [[2]] = 2

= calculate [[=]] (evaluate [[3]] (2,plus,2,0)), since nop(0,2) = 2

= calculate [[=]] (2,plus,3,0), since value [[3]] = 3

= (2,nop,5,0), since plus(2,3) = 5.

Therefore meaning [[2 + 3 =]] = 5.

A similar evaluation corresponding to the computation in Figure 9.7 will
provide a useful example of elaborating the semantics of the calculator—
namely, to demonstrate that

meaning [[12 + 5 +/- = x 2 M+ 123 M+ MR +/- – 25 = + MR =]] = -25.

Remember that the ambiguity in the abstract syntax is resolved by viewing
the keystrokes from left to right.

Real calculators have two conditions that produce errors when evaluating
integer arithmetic: arithmetic overflow and division by zero. Our calculator
has no division so that we can avoid handling the problem of division by zero
as a means of reducing the complexity of the example. Furthermore, we as-
sume unlimited integers so that overflow is not a problem.

Exercises

1. Draw the abstract syntax tree that results from parsing the series of
keystrokes

12 + 5 +/- M+ M+ - 55 =.

Remember, keystrokes are entered and evaluated from left to right.

2. Evaluate the semantics of these combinations of keystrokes using the
denotational definition in this section:

a) 8 +/- + 5 x 3 =

b) 7 x 2 M+ M+ M+ – 15 + MR =

c) 10 - 5 +/- M+ 6 x MR M+ =

3. Prove that for any expression E, perform[[E Clear]] = perform[[Clear]].

4. Some calculators treat = differently from the calculator in this section,
repeating the most recent operation, so that “2 + 5 = =” leaves 12 on the
display and “2 + 5 = = =” leaves 17. Describe the changes that must be
made in the denotational semantics to model this alternative interpreta-
tion.

285

5. Prove that for any expression E, meaning [[E = M+]] = meaning [[E M+ =]].

6. Add to the calculator a key sqr that computes the square of the value in
the display. Alter the semantics to model the action of this key. Its syn-
tax should be similar to that of the +/- key.

7. Alter the calculator semantics so that Clear leaves the memory un-
changed. Modify the semantic equations to reflect this change.

8. Explain how the evaluate function for the semantics of the calculator
language can be thought of as a homomorphism.

9. Rewrite the denotational definition of the calculator semantics taking
the state to be State = Integer x Integer x (clear + unclear), representing
the display, memory, and a “clear” flag. Delete the semantic functions
compute and calculate, and use the following abstract syntax:

Abstract Syntactic Domains

P : Program E : Expression D: Digit

S : ExprSequence N : Numeral

Abstract Production Rules

Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression M+

| Expression = | Expression +/-

| Expression + Expression | Expression - Expression

| Expression x Expression

9.3 THE DENOTATIONAL SEMANTICS OF WREN

The programming language Wren exemplifies a class of languages referred to
as imperative. Several properties characterize imperative programming lan-
guages:

1. Programs consist of commands, thereby explaining the term “imperative”.

2. Programs operate on a global data structure, called a store, in which
results are generally computed by incrementally updating values until a
final result is produced.

3. The dominant command is the assignment instruction, which modifies a
location in the store.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

286 CHAPTER 9 DENOTATIONAL SEMANTICS

4. Program control entails sequencing, selection, and iteration, represented
by the semicolon, the if command, and the while command in Wren.

The abstract syntax for Wren appears in Figure 9.9. Compare this version
with the one in Figure 1.18. Note that lists of commands are handled some-
what differently. Instead of using the postfix operator “+”, a command is al-
lowed to be a pair of commands that by repetition produces a sequence of
commands. However, the definition still provides abstract syntax trees for
the same collection of programs. As a second change, input and output have
been omitted from Wren for the time being. This simplifies our initial discus-
sion of denotational semantics. The issues involved with defining input and
output will be considered later.

 Abstract Syntactic Domains
P : Program C : Command N : Numeral

D : Declaration E : Expression I : Identifier

T : Type O : Operator

Abstract Production Rules
Program ::= program Identifier is Declaration* begin Command end

Declaration ::= var Identifier+ : Type ;

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| skip | if Expression then Command else Command

| if Expression then Command | while Expression do Command

Expression ::= Numeral | Identifier | true | false | - Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | – | * | / | or | and | <= | < | = | > | >= | <>

Figure 9.9: Abstract Syntax for Wren

Semantic Domains

To provide a denotational semantics for Wren, we need to specify semantic
domains into which the syntactic constructs map. Wren uses two primitive
domains that can be described by listing (or suggesting) their values:

Integer = { …, -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }.

Primitive domains are combined into more complex structures by certain
mathematical constructions. The calculator language uses two of these struc-
tures, the Cartesian product and the function domain. The State in the se-

287

mantics of the calculator is a Cartesian product of four primitive domains, so
that each element of the State is a quadruple. Although we do not name the
function domains, we use them in the semantic functions—for example,
evaluate maps an Expression into a set of functions State → State. The nota-
tion for a function domain A → B agrees with normal mathematical notation.
We view this expression as representing the set of functions from A into B;
that the function f is a member of this set can be described by f : A → B using
a colon as the symbol for membership.

Wren without input and output needs no Cartesian product for its seman-
tics, but function domains are essential. The Store (memory) is modeled as a
function from Identifiers to values,

Store = Identifier → (SV + undefined),

where SV represents the collection of values that may be placed in the store,
the so-called storable values, and undefined is a special value indicating
that an identifier has not yet been assigned a value. The constant function
mapping each identifier to undefined serves as the initial store provided to a
Wren program. Wren allows integers and Boolean values to be storable. To
specify the domain of storable values, we take the union of the primitive
domains Integer and Boolean. The notion of set union will not keep the sets
separate if they contain common elements. For this reason, we use the no-
tion of disjoint union or disjoint sum that requires tags on the elements
from each set so that their origin can be determined. We exploit the notation

SV = int(Integer) + bool(Boolean)

for the disjoint union of Integer and Boolean, where the tag int indicates the
integer values and the tag bool specifies the Boolean values. Typical elements
of SV are int(5), int(-99), and bool(true). Such elements can be viewed as
Prolog structures where the function symbols provide the tags or as items in
a Standard ML datatype. The important feature of disjoint unions is that we
can always determine the origin of an element of SV by inspecting its tag. In
the disjoint sum for Store, undefined is a tagged value with no data field.
Chapter 10 provides a more formal definition of the structure of disjoint
unions.

We assume several properties about the store that make it an abstraction of
the physical memory of a computer—namely, that it has an unbounded
number of locations and that each location will be large enough to contain
any storable value. Formal semantics usually does not concern itself with
implementation restrictions imposed when executing programs on an ac-
tual computer.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

288 CHAPTER 9 DENOTATIONAL SEMANTICS

Language Constructs in Wren

Structurally, Wren includes three main varieties of language constructs: dec-
larations, commands, and expressions. In programming languages, declara-
tions define bindings of names (identifiers) to objects such as memory loca-
tions, literals (constants), procedures, and functions. These bindings are re-
corded in a structure, called an environment, that is active over some part
of a program known as the scope of the bindings. Since a Wren program has
only one scope, the entire program, environments can be ignored in its se-
mantics. Thus the environment of a Wren program is constant, in effect de-
termined at the start of the program, and need not be modeled at all in the
dynamic semantics of Wren. The declarations in Wren act solely as part of
the context-sensitive syntax that we assume has already been verified by
some other means, say an attribute grammar. Later we show that denotational
semantics can be used to verify context conditions. For now, we assume that
any Wren program to be analyzed by our denotational semantics has no
inconsistency in its use of types. At this stage, we also ignore the program
identifier, taking it as documentation only.

Expressions in a programming language produce values. An important de-
fining trait of a language is the sorts of values that expressions can produce,
called the expressible values or the first-class values of the language. The
expressible values in Wren are the same as the storable values:

EV = int(Integer) + bool(Boolean).

The value of an expression will depend on the values associated with its
identifiers in the store. Therefore the semantic function evaluate for expres-
sions has as its signature

evaluate : Expression → (Store → EV).

The syntax of evaluate can also be given by

evaluate : Expression x Store → EV,

but we prefer the first (curried) version since it allows partial evaluation of
the semantic function. The object evaluate [[I]] makes sense as a function
from the store to an expressible value when we use the curried version. This
approach to defining functions sometimes allows us to factor out rightmost
arguments (see command sequencing in the denotational definition given
later in this section).

Commands may modify the store, so we define the meaning of a command to
be a function from the current store to a new store. We mentioned earlier
that the store is global and implied that only one store exists. When we speak
of the “current store” and the “new store”, we mean snapshots of the same
store. The signature of the semantic function execute for commands is given by

execute : Command → (Store → Store).

289

The meaning of a command is thus a function from Store to Store.

As for primitive syntactic domains, Numerals will be handled by the seman-
tic function value as with the calculator language, and the Boolean values
true and false will be defined directly by evaluate. Note that the syntactic
domain Identifier is used in defining the semantic domain Store. To make
sense of this mixing of syntactic and semantic worlds, we assume that the
denotational semantics of Wren has an implicit semantic function that maps
each Identifier in the syntactic world to a value in the semantic world that is
the identifier itself, as the attribute Name did in the attribute grammars for
Wren. We can pretend that we have an invisible semantic function defined
by id [[I]] = I.

Since input and output commands have been omitted from Wren for the time
being, we consider the final values of the variables of the program to be the
semantics of the program. So the signature of meaning is

meaning : Program → Store.

The semantic domains for Wren and the signatures of the semantic func-
tions are summarized in Figure 9.10. Remember that the semantic domain
Store allows its maps to take the special value undefined to represent identi-
fiers that have not yet been assigned a value and that in the disjoint sum,
undefined stands for a tag with an empty “value”. By the way, in construct-
ing semantic domains we assume that disjoint sum “+” has a higher prece-
dence than the forming of a function domain, so some parentheses may be
omitted—for example, those around SV + undefined in the definiton of Store.

Semantic Domains
Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }

EV = int(Integer) + bool(Boolean) -- expressible values

SV = int(Integer) + bool(Boolean) -- storable values

Store = Identifier → SV + undefined

Semantic Functions
meaning : Program → Store

execute : Command → (Store → Store)

evaluate : Expression → (Store → EV)

value : Numeral → EV

Figure 9.10: Semantic Domains and Functions for Wren

9.3 THE DENOTATIONAL SEMANTICS OF WREN

290 CHAPTER 9 DENOTATIONAL SEMANTICS

Auxiliary Functions

To complete our denotational definition of Wren, we need several auxiliary
functions representing the normal operations on the primitive semantic do-
mains and others to make the semantic equations easier to read. Since Wren
is an algorithmic language, its operations must map to mathematical opera-
tions in the semantic world. Here we use the semantic operations plus, mi-
nus, times, divides, less, lesseq, greater, greatereq, equal, neq defined on the
integers with their normal mathematical meanings. The relational operators
have syntax following the pattern

less : Integer x Integer → Boolean.

Operations that update and access the store can be threaded into the defini-
tions of the semantic functions, but we get a cleaner specification by factor-
ing these operations out of the semantic equations, thereby treating the store
as an abstract data type. In defining these auxiliary functions and Wren’s
semantic functions, we make use of semantic metavariables in a way similar
to the syntactic domains. We use “sto” for elements of Store and “val” for
values in either EV or SV. Three auxiliary functions manipulate the store:

emptySto : Store

emptySto I = undefined or emptySto = λ I . undefined

updateSto : Store x Identifier x SV → Store

updateSto(sto,I,val) I1 = (if I = I1 then val else sto(I1))

applySto : Store x Identifier → SV + undefined

applySto(sto,I) = sto(I)

The definition of updateSto means that updateSto(sto,I,val) is the function
Identifier → SV + undefined that is identical to sto except that I is bound to
val. Denotational definitions frequently use lambda notation to describe func-
tions, as seen above in the definition of emptySto. See Chapter 5 for an expla-
nation of the lambda calculus.

Semantic Equations

The semantic equations for the denotational semantics of Wren are listed in
Figure 9.11. Notice how we simply ignore the declarations in the first equa-
tion by defining the meaning of a program to be the store that results from
executing the commands of the program starting with the store in which all
identifiers are undefined. Command sequencing follows the pattern shown
in the calculator language. Observe that execute [[skip]] is the identity func-
tion on Store. Some semantic equations for expressions are omitted in Fig-
ure 9.11—they follow the pattern given for the operations addition and less
than.

291

meaning [[program I is D begin C end]] = execute [[C]] emptySto

execute [[C1 ; C2]] = execute [[C2]] ° execute [[C1]]

execute [[skip]] sto = sto

execute [[I := E]] sto = updateSto(sto, I, (evaluate [[E]] sto))

execute [[if E then C]] sto = if p then execute [[C]] sto else sto

where bool(p) = evaluate [[E]] sto

execute [[if E then C1 else C2]] sto =

if p then execute [[C1]] sto else execute [[C2]] sto

where bool(p) = evaluate [[E]] sto

execute [[while E do C]] = loop

where loop sto = if p then loop(execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto

evaluate [[I]] sto = if val=undefined then error else val

where val = applySto(sto, I)

evaluate [[N]] sto = int(value [[N]])

evaluate [[true]] sto = bool(true) evaluate [[false]] sto = bool(false)

evaluate [[E1 + E2]] sto = int(plus(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto
:

evaluate [[E1 / E2]] sto = if n=0 then error else int(divides(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto

evaluate [[E1 < E2]] sto = if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto
:

evaluate [[E1 and E2]] sto = if p then bool(q) else bool(false)

where bool(p) = evaluate [[E1]] sto and bool(q) = evaluate [[E2]] sto

evaluate [[E1 or E2]] sto = if p then bool(true) else bool(q)

where bool(p) = evaluate [[E1]] sto and bool(q) = evaluate [[E2]] sto

evaluate [[- E]] sto = int(minus(0,m)) where int(m) = evaluate [[E]] sto

evaluate [[not(E)]] sto = if p then bool(false) else bool(true)

where bool(p) = evaluate [[E]] sto

Figure 9.11: Semantic Equations for Wren

An assignment evaluates the expression on the right and updates the store
accordingly. To illustrate the change in the store caused by the updateSto
operation, we use the notation “{x|→int(3), y|→int(5), z|→int(8)}” to represent
a store with those three bindings where every other identifier maps to unde-
fined. Observe that for any Wren program, no matter how long or complex,

9.3 THE DENOTATIONAL SEMANTICS OF WREN

292 CHAPTER 9 DENOTATIONAL SEMANTICS

the current store function will always be finite in the sense that all but a
finite set of identifiers will map to undefined. We also use the notation
“{x|→int(25) y|→int(-1)}sto” to stand for the store that is identical to sto ex-
cept that x has the value 25 and y the value -1. Therefore we can write

updateSto(updateSto(emptySto,a,int(0)),b,int(1))
= updateSto({a|→int(0)}emptySto,b,int(1))
= {a|→int(0), b|→int(1)}emptySto
= {a|→int(0), b|→int(1)}.

Incidentally, this store is the meaning of execute [[a := 0; b := 1]] emptySto. To
tie these two notations together, we view {a|→int(0), b|→int(1)}as an abbrevia-
tion for {a|→int(0), b|→int(1)}emptySto.

One other point needs to be made about our functional notation. It has been
implicitly assumed that function application associates to the left as with the
lambda calculus, so that

execute [[a := 0; b := 1]] emptySto = (execute [[a := 0; b := 1]]) emptySto.

Furthermore, the arrow forming a function domain associates to the right,
so that

execute : Command → Store → Store
means

execute : Command → (Store → Store).

Surprisingly, these two conventions, associating application to the left and
→ to the right, agree, as shown by the following signatures:

execute : Command → Store → Store

execute [[a := 0; b := 1]] : Store → Store

execute [[a := 0; b := 1]] emptySto : Store.

Also remember that composition “°” is an associative operation so that no
convention is required to disambiguate f°g°h.

When we inspect primitive values, as in the selection (if) commands, we must
account for the tags provided by the disjoint sum. Maintaining correct tags is
also an important part of defining the evaluate semantic function.

The while command presents special difficulties in a denotational definition.
A naive approach to its meaning follows its operational description—namely,
to evaluate the test and, if its value is true, to execute the body of the while
and repeat the entire command, whereas if it is false, to do nothing (more).
The corresponding semantic equation can be written:

execute [[while E do C]] sto =
if p then execute [[while E do C]](execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto.

293

Although this equation captures the operational explanation, it fails to ad-
here to a fundamental tenet of denotational semantics—namely, that each
semantic equation be compositional. The meaning of the while command is
defined in terms of itself, not just its constituent parts. Using a technique
common to functional programming we transform this equation into a defi-
nition that is compositional:

execute [[while E do C]] = loop
where loop sto = if p then loop(execute [[C]] sto) else sto

where bool(p) = evaluate [[E]] sto.

In this definition we have factored out a function embodying the effect of the
meaning of a while command; “loop: Store → Store” is a function that models
execute [[while E do C]] compositionally as a recursive function defined on
stores. This approach will be justified in Chapter 10, where we also ensure
that recursive definitions of functions are really describing mathematical
objects.

The meaning of expressions is straightforward, consisting of evaluating the
operands and then passing the values to auxiliary functions in the semantic
world. The Boolean operations and, or, and not are defined directly as condi-
tional expressions in the metalanguage.

Error Handling

We take a simple approach to dynamic errors in Wren, automatically adding
a special element error to each of the semantic domains and assuming that
all semantic functions produce error when given error as an argument; that
is, errors propagate. In an actual programming language, a program aborts
when a dynamic (or runtime) error occurs, but the kind of denotational se-
mantics described in this section—namely, direct denotational semantics—
makes this sort of termination very difficult to define.

Nontermination of a while command is also not modeled directly by our
semantics, but it will be considered when we study semantic domains more
carefully in Chapter 10. We tolerate an operational point of view in the sense
that a nonterminating while command gives no value at all under the ex-
ecute semantic function, making execute a partial function. For example, we
consider execute [[while true do skip]] to be an undefined function on any
store.

The semantic equations in Figure 9.11 are heavily dependent on pattern
matching, such as “int(m) = evaluate [[E]] sto”, for their definition. The ques-
tion may arise as to whether this pattern matching can fail—for example,
what if “evaluate [[E]] sto” in a numeric expression produces the value
bool(true)? Since we assume that programs that are analyzed by the

9.3 THE DENOTATIONAL SEMANTICS OF WREN

294 CHAPTER 9 DENOTATIONAL SEMANTICS

denotational semantics have already been verified as syntactically valid ac-
cording to both the context-free and context-sensitive syntax of Wren, a nu-
meric expression cannot produce a Boolean value. If, on the other hand,
such an expression produces error, say by accessing an undefined variable,
then the error value is propagated through the equations.

Semantic Equivalence

Denotational semantics provides a method for formulating the equivalence
of two language phrases.

Definition: Two language constructs are semantically equivalent if they
share the same denotation according to their denotational definition. ❚

For example, for any command C, since

execute [[C; skip]] sto = execute [[skip]] (execute [[C]] sto) = execute [[C]] sto,

we conclude that “C; skip” is semantically equivalent to C.

Furthermore, we can show that the following denotations are mathemati-
cally the same function:

execute [[a := 0; b := 1]] sto = {a|→int(0), b|→int(1)}sto

execute [[b := 1; a := b–b]] sto = execute [[a := b–b]] {b|→int(1)}sto
= {b|→int(1), a|→int(0)}sto,

since 0 = minus(1,1). Therefore “a := 0; b := 1” is semantically equivalent to
“b := 1; a := b–b”.

As a consequence of this definition of semantic equivalence, we cannot dis-
tinguish nonterminating computations since they have no denotation. Hence,
the commands “while true do m:=m+1” and “while true do skip” are se-
mantically equivalent. (Since we consider only abstract syntax trees when
analyzing syntax, we omit “end while” from these commands.)

Input and Output

Remember, Wren allows only integer values for input and output. The read
and write commands permit Wren to communicate with entities outside of
programs—namely, files of integers. We model these files as semantic do-
mains that are sets of finite lists where any particular file is an element of
one of these sets:

Input = Integer*
Output = Integer*.

295

At each point during the execution of a program, the values in these lists
influence the current computation and the final result of the program. We
define the meaning of a program as a function between two files taken from
Input and Output:

meaning : Program → (Input → Output).

Since input and output are performed by commands, the semantic function
for them must encompass the values of the input and output files. We de-
scribe the state of a machine executing a Wren program with input and out-
put as a semantic domain containing the store and two lists of integers:

State = Store x Input x Output.

The signature of the execute semantic function for commands becomes

execute : Command → State → State.

Again, we rely on auxiliary functions to handle the manipulation of the input
and output files to simplify the semantic equations. We represent an arbi-
trary list of integers by the notation [n1,n2, ..., nk] where k≥0. A list with k=0
is empty and is represented as []. We need four auxiliary functions that are
similar to those found in a list-processing language such as Scheme (see
Chapter 6).

head : Integer* → Integer

head [n1,n2, ..., nk] = n1 provided k≥1.

tail : Integer* → Integer*

tail [n1,n2, ..., nk] = [n2, ..., nk] provided k≥1.

null : Integer* → Boolean

null [n1,n2, ..., nk] = (k=0)

affix : Integer* x Integer → Integer*

affix ([n1,n2, ..., nk],m) = [n1,n2, ..., nk,m].

Although all the semantic equations for meaning and execute must be al-
tered to reflect the new signature, the changes for most commands are merely
cosmetic and are left to the reader as an exercise. We list only those semantic
equations that are totally new, using “inp” and “outp” as metavariables rang-
ing over Input and Output:

meaning [[program I is D begin C end]] inp = outp
where (sto, inp1, outp) = execute [[C]] (emptySto, inp, [])

execute [[read I]] (sto,inp,outp) =
if null(inp) then error

else (updateSto(sto,I,int(head(inp))), tail(inp), outp)

9.3 THE DENOTATIONAL SEMANTICS OF WREN

296 CHAPTER 9 DENOTATIONAL SEMANTICS

execute [[write E]] (sto,inp,outp) = (sto, inp, affix(outp,val))
where int(val) = evaluate [[E]] sto.

In the next section where Wren is implemented in the laboratory, we develop
a prototype implementation of Wren based on its denotational semantics. We
consider two methods for implementing input and output, one based on these
denotational definitions, and one that ignores the denotational approach,
handling input and output interactively.

Elaborating a Denotational Definition

The denotational semantics for Wren supplies a meaning to each Wren pro-
gram. Here we apply the semantic functions defined for Wren to give mean-
ing to the following Wren program that contains both input and output. This
example illustrates that a complete denotational description of even a small
program entails a considerable amount of patience and attention to detail.

program sample is
var sum,num : integer;

begin
sum := 0;
read num;
while num>=0 do

if num>9 and num<100
then sum := sum+num

end if;
read num

end while;
write sum

end

The meaning of the program is defined by

meaning [[program I is D begin C end]] inp = outp
where (sto, inp1, outp) = execute [[C]] (emptySto, inp, []).

The semantic equations for execute must be altered to reflect the use of states.
For example, the meaning of an assignment command is defined as

execute [[I := E]] (sto,inp,outp) =
(updateSto(sto,I,(evaluate [[E]] sto)),inp,outp).

Let the input list be [5,22,-1]. To simplify the work, the elaboration employs
several abbreviations.

d = var sum,num : integer

c1 = sum := 0

c2 = read num

297

c3 = while num>=0 do c3.1 ; c3.2

c3.1 = if num>9 and num<100 then sum := sum+num

c3.2 = read num

c4 = write sum

Using these abbreviations for the abstract syntax trees that make up the
program, the meaning of sample unfolds as follows:

meaning [[program sample is d begin c1 ; c2 ; c3 ; c4 end]] [5,22,-1] = outp
 where (sto, inp1, outp) = execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], []).

In Wren the semantics of a program reduces to the meaning of its sequence
of commands.

execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], [])
= (execute [[c4]] ° execute [[c3]] ° execute [[c2]] ° execute [[c1]])

(emptySto, [5,22,-1], [])
= execute [[c4]] (execute [[c3]] (execute [[c2]] (execute [[c1]]

(emptySto, [5,22,-1], [])))).

The commands are executed from the inside out, starting with c1.

execute [[sum := 0]] (emptySto, [5,22,-1], [])
= (updateSto(emptySto, sum, (evaluate [[0]] emptySto)), [5,22,-1], [])
= (updateSto(emptySto, sum, int(0)), [5,22,-1], [])
= ({sum|→int(0)}, [5,22,-1], []).

execute [[read num]] ({sum|→int(0)}, [5,22,-1], [])
= (updateSto({sum|→int(0)},num,int(5)), [22,-1], [])
= ({sum|→int(0),num|→int(5)}, [22,-1], []).

Let sto0,5 = {sum|→int(0),num|→int(5)}.

execute [[while num>=0 do c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= loop (sto0,5, [22,-1], [])

where loop (sto,in,out) =
if p then loop(execute [[c3.1 ; c3.2]] (sto,in,out)) else (sto,in,out)

where bool(p) = evaluate [[num>=0]] sto.
We work on the Boolean expression first.

evaluate [[num]] sto0,5 = applySto(sto0,5, num) = int(5).

evaluate [[0]] sto0,5 = int(0).

evaluate [[num>=0]] sto0,5
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[-0]] sto0,5

= if greatereq(5,0) then bool(true) else bool(false)
= bool(true).

9.3 THE DENOTATIONAL SEMANTICS OF WREN

298 CHAPTER 9 DENOTATIONAL SEMANTICS

Now we can execute loop for the first time.

loop (sto0,5, [22,-1], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))

else (sto0,5, [22,-1], [])
where bool(p) = evaluate [[num>=0]] sto0,5

= if true then loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))
else (sto0,5, [22,-1], [])

= loop(execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], [])).

To complete the execution of loop, we need to execute the body of the while
command.

execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= execute [[read num]]

(execute [[if num>9 and num<100 then sum := sum+num]]
(sto0,5, [22,-1], [])).

We need the value of the Boolean expression in the if command next.

evaluate [[num>9]] sto0,5
= if greater(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[9]] sto0,5

= if greater(5,9) then bool(true) else bool(false)
= bool(false)

evaluate [[num<100]] sto0,5
= if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,5
 and int(n) = evaluate [[100]] sto0,5

= if less(5,100) then bool(true) else bool(false)
= bool(true)

evaluate [[num>9 and num<100]] sto0,5
= if p then bool(q) else bool(false)

where bool(p) = evaluate [[num>9]] sto0,5
 and bool(q) = evaluate [[num<100]] sto0,5

= if false then bool(true) else bool(false)
= bool(false).

Continuing with the if command, we get the following.

execute [[if num>9 and num<100 then sum := sum+num]] (sto0,5, [22,-1], [])
= if p then execute [[sum := sum+num]] (sto0,5, [22,-1], [])

 else (sto0,5, [22,-1], [])
where bool(p) = evaluate [[num>9 and num<100]] sto0,5

= if false then execute [[sum := sum+num]] (sto0,5, [22,-1], [])
 else (sto0,5, [22,-1], [])

= (sto0,5, [22,-1], []).

299

After finishing with the if command, we proceed with the second command
in the body of the while.

execute [[read num]] (sto0,5, [22,-1], []))
= (updateSto(sto0,5,num,int(22)), [-1], [])
= ({sum|→int(0),num|→int(22)}, [-1], []).

Let sto0,22 = {sum|→int(0),num|→int(22)}.

Summarizing the execution of the body of the while command, we have the
result

execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []) = (sto0,22, [-1], []).

This completes the first pass through loop.

loop (sto0,5, [22,-1], [])
= loop (execute [[c3.1 ; c3.2]] (sto0,5, [22,-1], []))
= loop (sto0,22, [-1], []).

Again, we work on the Boolean expression from the while command first.

evaluate [[num]] sto0,22 = applySto(sto0,22, num) = int(22).

evaluate [[0]] sto0,22 = int(0).

evaluate [[num>=0]] sto0,22
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[0]] sto0,22

= if greatereq(22,0) then bool(true) else bool(false)
= bool(true).

Now we can execute loop for the second time.

loop (sto0,22, [-1], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))

else (sto0,22, [-1], [])
where bool(p) = evaluate [[num>=0]] sto0,22

= if true then loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))
else (sto0,22, [-1], [])

= loop(execute [[c3.1 ; c3.2]] (sto0,22, [-1], [])).

Again we execute the body of the while command.

execute [[c3.1 ; c3.2]] (sto0,22, [-1], [])
= execute [[read num]]

(execute [[if num>9 and num<100
then sum := sum+num]] (sto0,22, [-1], [])).

The Boolean expression in the if command must be evaluated again.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

300 CHAPTER 9 DENOTATIONAL SEMANTICS

evaluate [[num>9]] sto0,22
= if greater(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[9]] sto0,22

= if greater(22,9) then bool(true) else bool(false)
= bool(true)

evaluate [[num<100]] sto0,22
= if less(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto0,22
 and int(n) = evaluate [[100]] sto0,22

= if less(22,100) then bool(true) else bool(false)
= bool(true)

evaluate [[num>9 and num<100]] sto0,22
= if p then bool(q) else bool(false)

where bool(p) = evaluate [[num>9]] sto0,22
 and bool(q) = evaluate [[num<100]] sto0,22

= if true then bool(true) else bool(false)
= bool(true).

This time we execute the then clause in the if command.

execute [[if num>9 and num<100 then sum := sum+num]] (sto0,22, [-1], [])
= if p then execute [[sum := sum+num]] (sto0,22, [-1], [])

else (sto0,22, [-1], [])
where bool(p) = evaluate [[num>9 and num<100]] sto0,22

= if true then execute [[sum := sum+num]] (sto0,22, [-1], [])
else (sto0,22, [-1], [])

= execute [[sum := sum+num]] (sto0,22, [-1], []).

Therefore we need the value of the right side of the assignment command.

evaluate [[sum+num]] sto0,22
= int(plus(m,n))

where int(m) = evaluate [[sum]] sto0,22
 and int(n) = evaluate [[num]] sto0,22

= int(plus(0,22)) = int(22).

Completing the assignment provides the state produced by the if command.

execute [[sum := sum+num]] (sto0,22, [-1], [])
= (updateSto(sto0,22, sum, (evaluate [[sum+num]] sto0,22)), [-1], [])
= (updateSto(sto0,22, sum, int(22)), [-1], [])
= ({sum|→int(22),num|→int(22)}, [-1], []).

Let sto22,22 = {sum|→int(22),num|→int(22)}.

301

Continuing with the body of the while command for its second pass yields a
state with a new store after executing the read command.

execute [[read num]] (sto22,22, [-1], []))
= (updateSto(sto22,22,num,int(-1)), [], [])
= ({sum|→int(22),num|→int(-1)}, [], []).

Let sto22,-1 = {sum|→int(22),num|→int(-1)}.

Summarizing the second execution of the body of the while command, we
have the result

execute [[c3.1 ; c3.2]] (sto0,22, [-1], []) = (sto22,-1, [], []).

This completes the second pass through loop.

loop (sto0,22, [-1], [])
= loop (execute [[c3.1 ; c3.2]] (sto0,22, [-1], []))
= loop(sto22,-1, [], []).

Again we work on the Boolean expression from the while command first.

evaluate [[num]] sto22,-1 = applySto(sto22,-1, num) = int(-1).

evaluate [[0]] sto22,-1 = int(0).

evaluate [[num>=0]] sto22,-1
= if greatereq(m,n) then bool(true) else bool(false)

where int(m) = evaluate [[num]] sto22,-1
 and int(n) = evaluate [[0]] sto22,-1

= if greatereq(-1,0) then bool(true) else bool(false)
= bool(false).

When we execute loop for the third time, we exit the while command.

loop (sto22,-1, [], [])
= if p then loop(execute [[c3.1 ; c3.2]] (sto22,-1, [], []))

else (sto22,-1, [], [])
where bool(p) = evaluate [[num>=0]] sto22,-1

= if false then loop(execute [[c3.1 ; c3.2]] (sto22,-1, [], []))
else (sto22,-1, [], [])

= (sto22,-1, [], []).

Recapping the execution of the while command, we conclude:

execute [[while num>=0 do c3.1 ; c3.2]] (sto0,5, [22,-1], [])
= loop (sto0,5, [22,-1], [])
= (sto22,-1, [], []).

Now we continue with the fourth command in the program.

evaluate [[sum]] sto22,-1 = applySto(sto22,-1, sum) = int(22).

9.3 THE DENOTATIONAL SEMANTICS OF WREN

302 CHAPTER 9 DENOTATIONAL SEMANTICS

execute [[write sum]] (sto22,-1, [], [])
= (sto22,-1, [], affix([],val)) where int(val) = evaluate [[sum]] sto22,-1
= (sto22,-1, [], [22])).

Finally, we summarize the execution of the four commands to obtain the
meaning of the program.

execute [[c1 ; c2 ; c3 ; c4]] (emptySto, [5,22,-1], []) = (sto22,-1, [], [22])).
and so

meaning [[program sample is d begin c1 ; c2 ; c3 ; c4 end]] [5,22,-1] = [22].

Exercises

1. Add these language constructs to Wren and provide their denotational
semantics.

a) repeat-until command
Command ::= ... | repeat Command until Expression

b) conditional expression
Expression ::= ... | if Expression then Expression else Expression

Use your definition to prove the semantic equivalence of

m := if E1 then E2 else E3 and if E1 then m:=E2 else m:=E3.

c) expression with side effects
Expression ::= ... | begin Command return Expression end.

d) case command

Command ::= case IntegerExpr of (when Numeral+ => Command)+

2. Express the denotational meaning of this code fragment as a function
Store → Store using the notation described in this section for represent-
ing stores:

switch := true; sum := 0; k := 1;
while k<4 do

switch := not(switch);
if switch then sum := sum+k end if;
k := k+1

end while

3. Modify the remaining semantic equations for execute to reflect the inclu-
sion of input and output in Wren.

4. Carefully prove: execute [[m:=5; n:=m+3]] = execute [[n:=8; m:=n-3]].

303

5. Prove the semantic equivalence of these language phrases:

a) while E do C and if E then (C; while E do C) else skip

b) if E then C1 else C2 and if not(E) then C2 else C1

c) x := 5; y := 2*x and y := 10; x := y/2

d) E1 + E2 and E2 + E1

e) if E then (if E then C1 else C2) else C3 and if E then C1 else C3

f) (while E do C1); if E then C2 else C3 and (while E do C1); C3

6. Elaborate the denotational meaning of the following Wren program us-
ing the function, meaning: Program → Input → Output, taking [5,22,-1]
as the input list:

program bool is
var a,b : boolean;

begin
a := true; b := true;
while a or b do

write 5;
if not(a) then b := not(b) end if;
if b then a := not(a) end if

end while
end

7. Discuss the ambiguity in binary operations that occurs when expres-
sions can have side effects—for example, the expressions in exercise 1c
or in a language with function subprograms. Give an example of this
ambiguity. Where is this issue dealt with in a denotational definition?

8. A vending machine takes nickels, dimes, and quarters and has buttons
to select gum (30¢), a candy bar (50¢), or a brownie (65¢), or to return
the coins entered. After entering a sequence of coins and pressing a
button, the user receives the selected item (or nothing) and the change
from the purchase. When the value of the coins is insufficient for the
button pressed, the outcome is the same as from return.

The following two examples show how the vending machine might be
used:

“dime, dime, dime, quarter, candy bar button”
produces a candy bar and 5 cents in change.

“quarter, nickel, return” or “quarter, nickel, candy”
produce nothing and 30 cents in change.

9.3 THE DENOTATIONAL SEMANTICS OF WREN

304 CHAPTER 9 DENOTATIONAL SEMANTICS

The language of the vending machine has the following abstract
syntax:

Program ::= CoinSeq Button
CoinSeq ::= ε | Coin CoinSeq
Coin ::= Nickel | Dime | Quarter
Button ::= Gum | Candy | Brownie | Return

Using the semantic domains
Result = { gum, candy, brownie, naught } and
Number = { 0, 1, 2, 3, 4, … },

provide a denotational semantics for the language of the vending ma-
chine.

9. Consider the language of propositional logic, which contains symbols
from the following syntactic domains:

var : Var = { p, q, r, p1, q1, r1, p2, q2, … } Propositional variables

con : Con = { t, f } Propositional constants

uop : Uop = { ~ } Unary operation

bop : Bop = { ∧ , ∨ , ⊃ , ↔ } Binary operations

a) Give a BNF grammar for the concrete syntax of the language (well-
formed formulas) of propositional logic.

b) Describe an abstract syntax of this language in terms of the syntactic
variables for the syntactic domains.

c) Provide a denotational definition that gives meaning to the formulas
in the language of propositional logic, specifying the semantic
domain(s), the syntax of the semantic function(s), and the semantic
equations that define the semantics of the language. One parameter
to the semantic functions will be a function assigning Boolean values
to the propositional variables.

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

In Chapter 2 we developed a scanner and parser that take a text file contain-
ing a Wren program and produce an abstract syntax tree. Now we continue,
creating a prototype implementation of Wren based on its denotational se-
mantics. The semantic equations are translated into Prolog clauses that carry
out the denotational definition when executed.

We illustrate the result of this exercise with a Wren program that tests whether
positive integers are prime. It expects a list of integers terminated by a nega-
tive number or zero as input and returns those integers that are prime and

305

zero for those that are not. A sample execution of a version of the interpreter
using interactive (nondenotational) input and output is shown below:

>>> Interpreting Wren via Denotational Semantics <<<
Enter name of source file: prime.wren
 program prime is
 var num,div : integer;
 var done : boolean;
 begin
 read num;
 while num>0 do
 div := 2; done := false;
 while div<= num/2 and not(done) do
 done := num = div*(num/div);
 div := div+1
 end while;
 if done then write 0
 else write num
 end if;
 read num
 end while
 end
Scan successful
Parse successful
Input: 23
Output = 23
Input: 91
Output = 0
Input: 149
Output = 149
Input: 0
Final store:

num int(0)
div int(75)
done bool(false)

yes

If the denotational approach to input and output is followed using a state
containing an input list, an output list, and the store (see section 9.3), the
results look like this:

Enter input list followed by a period:
[23,79,91,129,149,177,0].

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

306 CHAPTER 9 DENOTATIONAL SEMANTICS

Output = [23,79,0,0,149,0]
yes

We consider the version with interactive input and output in this section,
leaving the denotational version as an exercise. To implement a denotational
definition in Prolog, we translate semantic functions into relations given by
Prolog predicates. Since functions are relations, this approach works nicely.
For example, the execute function

execute : Command → Store → Store

becomes the predicate execute(Cmd, Sto, NewSto). In the abstract syntax tree
produced by the parser, command sequencing is handled by using a Prolog
list of commands. In the semantic equations, execute processes the first com-
mand producing a temporary store that is given to another application of
execute on the rest of the commands. Executing an empty list results in the
identity relation on stores.

execute([Cmd|Cmds],Sto,NewSto) :- execute(Cmd,Sto,TempSto),
execute(Cmds,TempSto,NewSto).

execute([],Sto,Sto).

Both the if and while commands require auxiliary predicates in their Prolog
versions. We illustrate the while command since it is a bit more complex:

execute(while(Test,Body),Sto,NewSto) :- loop(Test,Body,Sto,NewSto).

loop(Test,Body,Sto,NewSto) :- evaluate(Test,Sto,Val),
iterate(Val,Test,Body,Sto,NewSto).

iterate(bool(true),Test,Body,Sto,NewSto) :- execute(Body,Sto,TempSto),
loop(Test,Body,TempSto,NewSto).

iterate(bool(false),Test,Body,Sto,Sto).

Before considering the assignment command, we need to discuss how to
model the finite function that comprises the store. We portray the store as a
Prolog structure of the form

sto(a, int(3), sto(b, int(8), sto(c, bool(false), nil)))

for the store {a|→int(3), b|→int(8), c|→bool(false)}. The empty store is given by
the Prolog atom nil. The auxiliary functions for manipulating the store be-
come predicates defined as follows:

updateSto(sto(Ide,V,Sto),Ide,Val,sto(Ide,Val,Sto)).

updateSto(sto(I,V,Sto),Ide,Val,sto(I,V,NewSto)) :-
updateSto(Sto,Ide,Val,NewSto).

updateSto(nil,Ide,Val,sto(Ide,Val,nil)).

307

The predicate updateSto(Sto,Ide,Val,NewSto) searches the current store for a
match with Ide. If the identifier is found, its binding is changed to Val in the
new store. If Ide is not found, the binding Ide|→Val is inserted at the end of
the store. A value binding for an identifier is found using the predicate applySto.

applySto(sto(Ide,Val,Sto),Ide,Val).

applySto(sto(I,V,Sto),Ide,Val) :- applySto(Sto,Ide,Val).

applySto(nil,Ide,undefined) :- write('Undefined variable'), nl, abort.

Note that when an identifier cannot be found in the store, applySto prints an
error message and aborts the execution of the denotational interpreter to
indicate the runtime error.

The assignment command evaluates the expression on the right and updates
the identifier in the store:

execute(assign(Ide,Exp),Sto,NewSto) :- evaluate(Exp,Sto,Val),
updateSto(Sto,Ide,Val,NewSto).

The evaluate function, evaluate : Expression → Store → EV, takes an expres-
sion and the current store and produces an expressible value. For literals,
we use the value given by the scanner and attach the appropriate tag:

evaluate(num(N),Sto,int(N)).

evaluate(true,Sto,bool(true)).

evaluate(false,Sto,bool(false)).

For identifiers, evaluate simply fetches a value from the store:

evaluate(ide(Ide),Sto,Val) :- applySto(Sto,Ide,Val).

Numeric binary operations are handled by evaluating the two operands us-
ing evaluate and calling a predicate compute that carries out the operations
using the native arithmetic in Prolog. We illustrate a few of the operations:

evaluate(exp(Opr,E1,E2),Sto,Val) :- evaluate(E1,Sto,V1), evaluate(E2,Sto,V2),
compute(Opr,V1,V2,Val).

compute(times,int(M),int(N),int(R)) :- R is M*N.

compute(divides,int(M),int(0),int(0)) :- write('Division by zero'), nl, abort.

compute(divides,int(M),int(N),int(R)) :- R is M//N.

Observe how a division-by-zero error causes the interpreter to abort. This
action does not follow the denotational definition but avoids the problem of
propagating errors in the prototype interpreter.

Comparisons and Boolean operations can be dealt with in a similar manner,
except that some operations are implemented using pattern matching:

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

308 CHAPTER 9 DENOTATIONAL SEMANTICS

evaluate(bexp(Opr,E1,E2),Sto,Val) :- evaluate(E1,Sto,V1), evaluate(E2,Sto,V2),
compute(Opr,V1,V2,Val).

compute(equal,int(M),int(N),bool(true)) :- M =:= N.
compute(equal,int(M),int(N),bool(false)).

compute(neq,int(M),int(N),bool(false)) :- M =:= N.
compute(neq,int(M),int(N),bool(true)).

compute(lteq,int(M),int(N),bool(true)) :- M =< N.
compute(lteq,int(M),int(N),bool(false)).

compute(and,bool(true),bool(true),bool(true)).
compute(and,bool(P),bool(Q),bool(false)).

For an entire program, meaning calls execute with an empty store and returns
the final store, which is printed by the predicate controlling the system.

meaning(prog(Dec,Cmd),Sto) :- execute(Cmd,nil,Sto).

We now consider the two approaches to input and output. For the interactive
version, we disregard the denotational definitions for read and write and
simply rely on Prolog to fetch an input value from the keyboard and print an
integer on the screen. Executing the read command this way requires an
auxiliary predicate readnum that can be based on the part of the scanner for
processing integers.

execute(read(Ide),Sto,NewSto) :- write('Input: '), nl, readnum(N),
updateSto(Sto,Ide,int(N),NewSto).

execute(write(Exp),Sto,Sto) :- evaluate(Exp,Sto,Val), Val=int(M),
write('Output = '), write(M), nl.

The denotational approach complicates the semantic equations for execute,
as was discussed in section 9.3. Then the read and write commands act
directly on the input and output lists in the state, modeled by a Prolog struc-
ture, state(Sto,Inp,Outp).

execute(read(Ide),state(Sto,[H|T],Outp),state(NewSto,T,Outp)) :-
updateSto(Sto,Ide,int(H),NewSto).

execute(read(Ide),state(Sto,[],Outp),state(NewSto,[],Outp)) :-
write('Attempt to read empty input'), nl, abort.

execute(write(Exp),state(Sto,Inp,Outp),state(Sto,Inp,Outp1)) :-
evaluate(Exp,Sto,Val), int(M)=Val, concat(Outp,[M],Outp1).

Note that in both versions of write, we use a variable as the third parameter
of evaluate, and then use unification, denoted by =, to pull the integer out of
the structure. This convention ensures that if evaluate involves a store lookup

309

that fails, the failure comes in the body of the third clause applySto and not
because undefined in the head of that clause failed to pattern match with int(M).

The top-level meaning predicate calls execute with the original input list and
produces the output list as its result. We depend on a predicate go to request
the input and print the output.

meaning(prog(Dec,Cmd),Inp,Outp)) :-
execute(Cmd,state(nil,Inp,[]),state(Sto,Inp1,Outp)).

go :- nl, write('>>> Interpreting Wren <<<'), nl, nl,
write('Enter name of source file: '), nl, getfilename(FileName), nl,
see(FileName), scan(Tokens), seen, write('Scan successful'), nl, !,
program(Parse,Tokens,[eop]), write('Parse successful'), nl, !,
write('Enter input list followed by a period: '), nl, read(Inp), nl,
meaning(Parse,Inp,Outp),nl,write('Output = '), write(Outp), nl.

All of the clauses defining execute must correctly maintain the state; for ex-
ample, the assignment command has no effect on the input or output list but
needs access to the store argument inside the state:

execute(assign(Ide,Exp),state(Sto,Inp,Outp),state(Sto1,Inp,Outp)) :-
evaluate(Exp,Sto,Val), updateSto(Sto,Ide,Val,Sto1).

Exercises

1. Supply Prolog definitions for the remaining commands: skip and if.

2. Supply Prolog definitions for subtraction, multiplication, or, unary mi-
nus, not, and the remaining relations. Be careful in handling the tags
on the values.

3. Write a Prolog predicate readnum that accepts a string of digits from the
terminal and forms an integer. Modify the predicate to accept an op-
tional minus sign immediately preceding the digits.

4. Complete the Prolog definition of the prototype interpreter for both in-
teractive input and output and for the denotational version.

5. Extend the prototype interpreter to include the following language con-
structs:
a) repeat-until commands

Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

9.4 LABORATORY: IMPLEMENTING DENOTATIONAL SEMANTICS

310 CHAPTER 9 DENOTATIONAL SEMANTICS

c) expressions with side effects

Expression ::= ... | begin Command return Expression end

6. Write a scanner, parser, and denotational interpreter for the calculator
language described in section 9.2.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

In this section we extend Wren to a programming language in which declara-
tions contribute to the semantics as well as the context-sensitive syntax of
the language. The addition of procedures significantly enlarges the language,
and we thus take the P from procedure to give it a new name, Pelican. Figure
9.12 contains a definition of its abstract syntax. Notice the features that
make Pelican different from Wren:

Abstract Syntactic Domains
P : Program C : Command N : Numeral

B : Block E : Expression I : Identifier

D : Declaration O : Operator L : Identifier+

T : Type

Abstract Production Rules
Program ::= program Identifier is Block

Block ::= Declaration begin Command end

Declaration ::= ε | Declaration Declaration

| const Identifier = Expression

| var Identifier : Type | var Identifier, Identifier+ : Type

| procedure Identifier is Block

| procedure Identifier (Identifier : Type) is Block

Type ::= integer | boolean

Command ::= Command ; Command | Identifier := Expression

| skip | if Expression then Command else Command

| if Expression then Command | while Expression do Command

| declare Block | Identifier | Identifier(Expression)

| read Identifier | write Expression

Expression ::= Numeral | Identifier | true | false | - Expression

| Expression Operator Expression | not(Expression)

Operator ::= + | –| * | / | or | and | <= | < | = | > | >= | <>

Figure 9.12: Abstract Syntax for Pelican

311

1. A program may consist of several scopes corresponding to the syntactic
domain Block that occurs in the main program, in anonymous blocks
headed by declare, and in procedures.

2. Each block may contain constant declarations indicated by const as well
as variable declarations.

3. Pelican permits the declaration of procedures with zero or one value pa-
rameter and their use as commands. We limit procedures to no more than
one parameter for the sake of simplicity. Multiple parameters will be left
as an exercise.

We have slightly modified the specification of lists of declarations to make the
semantic equations easier to define. In particular, the nonempty lists of iden-
tifiers in variable declarations are specified with two clauses: the first handles
a basis case of one identifier, and the second manages lists of two or more
identifiers. In addition, we specify Pelican without the read and write com-
mands, whose definitions are left as an exercise at the end of this section.

Environments

In a block structured language with more than one scope, such as Pelican,
the same identifier can refer to different objects in different parts of the pro-
gram. The region where an identifier has a unique meaning is called the
scope of the identifier, and this meaning is recorded in a structure called an
environment. Therefore in Pelican the bindings between a variable identifier
and a value split into two parts: (1) a binding between the identifier and a
location, modeling a memory address, and (2) a binding of the location to its
value in the store. The record of bindings between identifiers and locations
as well as bindings of other sorts of objects, such as literals and procedures,
to identifiers is maintained in the environment. Those values that are bindable
to identifiers are known as denotable values, and in Pelican they are given
by the semantic domain

DV = int(Integer) + bool(Boolean) + var(Location) + Procedure,

where Procedure represents the domain of procedure objects in Pelican. We
defer the discussion of Pelican procedures until later. The first two terms in
the disjoint sum for DV provide the literal values that can be bound to iden-
tifiers by a const declaration.

As with stores, we use auxiliary functions to manipulate environments, thereby
treating them as an abstract data type:

emptyEnv : Environment

emptyEnv I = unbound

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

312 CHAPTER 9 DENOTATIONAL SEMANTICS

extendEnv : Environment x Identifier x DV → Environment

extendEnv(env,I,dval) I1 = (if I = I1 then dval else env(I1))

applyEnv : Environment x Identifier → DV + unbound

applyEnv(env,I) = env(I).

Stores

A store in Pelican becomes a function from locations, here modeled by the
natural numbers, to the storable values, augmented by two special values:
(1) unused for those locations that have not been bound to an identifier by a
declaration, and (2) undefined for locations that have been associated with a
variable identifier but do not have a value yet. Locations serve as an abstrac-
tion of memory addresses and should not be confused with them. In fact, any
ordinal set can be used to model locations; we take the natural numbers for
convenience.

The auxiliary functions for stores now include operations for allocating and
deallocating memory locations at block entry and exit:

emptySto : Store

emptySto loc = unused

updateSto : Store x Location x (SV + undefined + unused) → Store

updateSto(sto,loc,val) loc1 = (if loc = loc1 then val else sto(loc1))

applySto : Store x Location → SV + undefined + unused

applySto(sto,loc) = sto(loc)

allocate : Store → Store x Location

allocate sto = (updateSto(sto,loc,undefined),loc)
where loc = minimum { k | sto(k) = unused }

deallocate : Store x Location → Store

deallocate(sto,loc) = updateSto(sto,loc,unused).

The semantic domains for Pelican are summarized in Figure 9.13. We save
the explanation of the Procedure domain until later in this section.

Figures 9.14 and 9.15 show how a Pelican program with multiple scopes
influences environments and the store. We use a notation for environments
that is similar to the one employed to display the store. The expression
“[a|→int(5),b|→var(0)]” indicates that the identifier a is bound to the con-
stant 5 and b is bound to the location 0, while all other identifiers are un-
bound. Furthermore, “[x|→var(3),y|→var(4)]env” denotes the environment that
is identical to env except that x and y have new bindings.

313

Semantic Domains
Integer = { … , -2, -1, 0, 1, 2, 3, 4, … }

Boolean = { true, false }

EV = int(Integer) + bool(Boolean) -- expressible values

SV = int(Integer) + bool(Boolean) -- storable values

DV = EV + var(Location) + Procedure -- denotable values

Location = Natural Number = { 0, 1 2, 3, 4, … }

Store = Location → SV + unused + undefined

Environment = Identifier → DV + unbound

Procedure = proc0(Store → Store) + proc1(Location → Store → Store)

Semantic Functions
meaning : Program → Store

perform : Block → Environment → Store → Store

elaborate : Declaration → Environment → Store → Environment x Store

execute : Command → Environment → Store → Store

evaluate : Expression → Environment → Store → EV

value : Numeral → EV

Figure 9.13: Semantic Domains and Functions for Pelican

In the representation of the stores in Figure 9.15, locations that are unused
are simply omitted, whereas locations that are allocated but without a mean-
ingful value are indicated within the brackets as bound to undefined. So the
empty store with all locations bound to unused can be depicted by { }. Note
that seven different locations are allocated for the seven variables declared in
the program.

Semantic Functions

The main alteration in the semantic functions for Pelican is to add Environ-
ment as an argument and to include functions providing meaning to Blocks
and Declarations. The semantic function elaborate constructs a new envi-
ronment on top of the given environment reflecting the declarations that are
processed in the current block. Observe that elaborate produces a new store
as well as a new environment, since the declaration of variable identifiers
requires the allocation of locations, which thereby changes the state of the
store. On the other hand, constant and procedure declarations have no ef-
fect on the store. The function perform has the same signature as execute, but
it elaborates the declarations in the block before its commands are executed.
The signatures of the semantic functions may be found in Figure 9.13.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

314 CHAPTER 9 DENOTATIONAL SEMANTICS

 program scope is Environment
const c = 9; [c|→int(9)]

var a : integer; [a|→var(0), c|→int(9)]

var b : boolean; [b|→var(1), a|→var(0), c|→int(9)]

begin

a := 10; env1

b := a>0; env1

declare

const a = 0; [a|→int(0)] env1

var x,y : integer; [y|→var(3), x|→var(2), a|→int(0)] env1

begin

x := a; env2

y := c–2; env2

declare

var x : boolean; [x|→var(4)] env2

var c,d : integer; [d|→var(6), c|→var(5), x|→var(4)] env2

begin

x := not(b); env3

c := y+5; env3

d := 17 env3

end;

x := –c env2

end;

a := a+5 env1

end

where env1 = [b|→var(1), a|→var(0), c|→int(9)]

env2 = [y|→var(3), x|→var(2), a|→int(0)] env1

= [y|→var(3), x|→var(2), a|→int(0), b|→var(1), c|→int(9)]

env3 = [d|→var(6), c|→var(5), x|→var(4)] env2

= [d|→var(6), c|→var(5), x|→var(4), y|→var(3), a|→int(0), b|→var(1)]

Figure 9.14: Environments for the Program “scope”

315

 program scope is Store
const c = 9; { }

var a : integer; { 0|→ud }

var b : boolean; { 0|→ud, 1|→ud }

begin

a := 10; { 0|→int(10), 1|→ud }

b := a>0; { 0|→int(10), 1|→bool(true) }

declare

const a = 0; { 0|→int(10), 1|→bool(true) }

var x,y : integer; { 0|→int(10), 1|→bool(true), 2|→ud, 3|→ud }

begin

x := a; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→ud }

y := c–2; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7) }

declare

var x : boolean; { 0|→int(10), 1|→bool(true), 2|→int(0),

 3|→int(7), 4|→ud }

var c,d : integer; { 0|→int(10), 1|→bool(true), 2|→int(0),

3|→int(7), 4|→ud, 5|→ud, 6|→ud }

begin

x := not(b); { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→ud, 6|→ud }

c := y+5; { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→ud }

d := 17 { 0|→int(10), 1|→bool(true), 2|→int(0), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17) }

end;

x := –c { 0|→int(10), 1|→bool(true), 2|→int(-9), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17)) }

end;

a := a+5 { 0|→int(15), 1|→bool(true), 2|→int(-9), 3|→int(7),

4|→bool(false), 5|→int(12), 6|→int(17) }

end

where ud = undefined

Figure 9.15: The Store for the Program “scope”

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

316 CHAPTER 9 DENOTATIONAL SEMANTICS

Semantic Equations

Many of the semantic equations are straightforward extensions of those for
Wren, especially for those language constructs that are defined in the
denotational semantics of Wren. Figure 9.16 shows the semantic equations
except that we have omitted many of the evaluate equations since they all
follow the pattern established by the addition operation. We focus on those
functions that are entirely new—namely, perform and elaborate. The func-
tion perform is invoked by meaning for the whole program and by execute for
an anonymous block (declare). It also is encapsulated in the procedure ob-
jects declared in a program, but these will be considered in detail later.

meaning [[program I is B]] = perform [[B]] emptyEnv emptySto

perform [[D begin C end]] env sto = execute [[C]] env1 sto1
where (env1, sto1) = elaborate [[D]] env sto

elaborate [[ε]] env sto = (env, sto)

elaborate [[D1 D2]] env sto = elaborate [[D2]] env1 sto1

where (env1, sto1) = elaborate [[D1]] env sto

elaborate [[const I = E]] env sto = (extendEnv(env,I,evaluate [[E]] env sto), sto)

elaborate [[var I : T]] env sto = (extendEnv(env,I,var(loc)), sto1)

where (sto1, loc) = allocate sto

elaborate [[var I, L : T]] env sto = elaborate [[var L : T]] env1 sto1

where (env1,sto1) = elaborate [[var I : T]] env sto

elaborate [[procedure I is B]] env sto = (env1, sto)

where env1 = extendEnv(env,I,proc0(proc))

and proc = perform [[B]] env1

elaborate [[procedure I1(I2 : T) is B]] env sto = (env1, sto)

where env1 = extendEnv(env,I1,proc1(proc))

and proc loc = perform [[B]] extendEnv(env1,I2,var(loc))

Figure 9.16: Semantic Equations for Pelican (Part 1)

Compare the equation for elaborating a sequence of declarations with that
for executing a pair of commands. Since elaborate produces a pair of values,
Environment and Store, the composition operator cannot be used. Of course,
an empty declaration leaves the environment and store unchanged.

317

execute [[C1 ; C2]] env sto = execute [[C2]] env (execute [[C1]] env sto)

execute [[skip]] env sto = sto

execute [[I := E]] env sto = updateSto(sto, loc, (evaluate [[E]] env sto))

where var(loc) = applyEnv(env,I)

execute [[if E then C]] env sto = if p then execute [[C]] env sto else sto

where bool(p) = evaluate [[E]] env sto

execute [[if E then C1 else C2]] env sto =

if p then execute [[C1]] env sto else execute [[C2]] env sto

where bool(p) = evaluate [[E]] env sto

execute [[while E do C]] = loop

where loop env sto = if p then loop env (execute [[C]] env sto) else sto

where bool(p) = evaluate [[E]] env sto

execute [[declare B]] env sto = perform [[B]] env sto

execute [[I]] env sto = proc sto

where proc0(proc) = applyEnv(env,I)

execute [[I(E)]] env sto = proc loc updateSto(sto1,loc,evaluate [[E]] env sto)

where proc1(proc) = applyEnv(env,I) and (sto1,loc) = allocate sto

evaluate [[I]] env sto =

if dval = int(n) or dval = bool(p) then dval

else if dval = var(loc)

then if applySto(sto,loc) = undefined

then error

else applySto(sto,loc)

where dval = applyEnv(env,I)

evaluate [[N]] env sto = int(value [[N]])

evaluate [[true]] env sto = bool(true)

evaluate [[false]] env sto = bool(false)

evaluate [[E1 + E2]] env sto = int(plus(m,n))

where int(m) = evaluate [[E1]] env sto and int(n) = evaluate [[E2]] env sto

:

evaluate [[E1 / E2]] env sto = if n=0 then error else int(divides(m,n))

where int(m) = evaluate [[E1]] env sto and int(n) = evaluate [[E2]] env sto

:

Figure 9.16: Semantic Equations for Pelican (Part 2)

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

318 CHAPTER 9 DENOTATIONAL SEMANTICS

The declaration of a list of variable identifiers is reduced to declarations of
individual variable identifiers by elaborating the single identifier (the head
of the list) to produce a new environment and store and then by elaborating
the list of identifiers (the tail of the list) using that environment and store. In
the equation for “var I : T”, allocate produces a new state of the store be-
cause a location with the value undefined has been reserved for the variable.
Recall that L is the metavariable for nonempty lists of identifiers. The equa-
tion for “const I = E” simply binds the current value of E to the identifier I in
the environment, leaving the store unchanged. Note that these constant
identifiers are bound to dynamic expressions whose values may not be known
until run-time.

Observe that when a sequence of commands is executed, both commands
receive the same environment; only the store is modified by the commands.
The semantic equations may also be written using compositon:

execute [[C1 ; C2]] env = (execute [[C2]] env) ° (execute [[C1]] env)

An assignment command depends on the environment for the location of the
target variable and on the store for the value of the expression on the right
side. Executing an assignment results in a modification of the store using
updateSto.

Because we assume Pelican programs have already been checked for syntax
errors (both context-free and context-sensitive), only syntactically correct pro-
grams are submitted for semantic analysis. Therefore identifiers used in as-
signment commands, in expression, and in procedure calls are bound to
values of the appropriate type. The following semantic decisions need to be
handled in the semantic equations (in the absence of the read command):

1. Whether an identifier in an expression represents a constant or a variable.

2. Whether the location bound to a variable identifier has a value when it is
accessed (whether it is defined).

3. Whether the second operand to a divides operation is zero.

Procedures

A procedure declaration assembles a new binding in the environment. We
consider procedures without parameters first.

elaborate [[procedure I is B]] env sto = (env1, sto)
where env1 = (extendEnv(env,I,proc0(proc))
and proc = perform [[B]] env1.

The procedure object proc, constructed to complete the binding, encapsu-
lates a call of perform on the body of the procedure in the environment now
being defined, thus ensuring two important properties:

319

1. Since a procedure object carries along an extension of the environment in
effect at its definition, we get static scoping. That means nonlocal vari-
ables in the procedure will refer to variables in the scope of the declara-
tion, not in the scope of the call of the procedure (dynamic scoping). A
procedure object constructed this way is an example of a closure (see
Section 8.2).

2. Since the environment env1 inserted into the procedure object contains
the binding of the procedure identifier with this object, recursive refer-
ences to the procedure are permitted. If recursion is forbidden, the proce-
dure object can be defined by

proc = perform [[B]] env.

When such a procedure object is invoked by “execute [[I]] env sto”, the object
is found by accessing the current environment and is executed by passing
the current store to it, after first removing the tag proc0.

execute [[I]] env sto = proc sto
where proc0(proc) = applyEnv(env,I).

For procedures that take a parameter, the object defined in the declaration is
a function of a location corresponding to the formal parameter that will be
provided at procedure invocation time when the value of the actual param-
eter passed to the procedure is stored in the location.

elaborate [[procedure I1(I2 : T) is B]] env sto = (env1, sto)
where env1 = extendEnv(env,I1,proc1(proc))
and proc loc = perform [[B]] extendEnv(env1,I2,var(loc)).

The environment encapsulated with the procedure object includes a binding
of the unspecified location “loc” to the formal parameter I2. Note that the
actual location must be allocated at the point of call, thus providing “call by
value” semantics for the parameter.

execute [[I(E)]] env sto = proc loc updateSto(sto1,loc,evaluate [[E]] env sto)
where proc1(proc) = applyEnv(env,I) and (sto1,loc) = allocate sto.

The procedure object then executes with a store having the allocated location
loc bound to the value of the actual parameter “evaluate [[E]] env sto”. Again
the environment env1, provided to the procedure object proc, contains the
binding of the procedure name, so that recursion can take place.

Figure 9.17 shows a Pelican program with the declaration of a recursive pro-
cedure along with the environments at points of the program. Because Peli-
can adheres to static scoping, we can identify the bound identifiers at each
position in the program. Since the procedure has no local variables other
than the formal parameter, the procedure object proc disregards the elabora-
tion of its (empty) declarations. The four calls, sum(3), sum(2), sum(1), and

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

320 CHAPTER 9 DENOTATIONAL SEMANTICS

 program summation is Environment

var s : integer; [s|→var(0)]

procedure sum(n:integer) is [s|→var(0), sum|→proc1(proc)]

begin

if n>0 env2,loc

then s := s+n; env2,loc

sum(n–1) end if env2,loc

end;

begin

s := 0; env1

sum(3) env1

end

 where

proc =

λ loc . execute [[if n>0 then s := s+n; sum(n–1)]] extendEnv(env1,n,var(loc))

env1 = [s|→var(0), sum|→proc1(proc)]

env2,1 = [s|→var(0), sum|→proc1(proc), n|→var(1)]

env2,2 = [s|→var(0), sum|→proc1(proc), n|→var(2)]

env2,3 = [s|→var(0), sum|→proc1(proc), n|→var(3)]

env2,4 = [s|→var(0), sum|→proc1(proc), n|→var(4)]

Figure 9.17: A Procedure Declaration in Pelican

sum(0), result in four environments env2,1, env2,2, env2,3, and env2,4, respec-
tively, as new locations are allocated.

In Figure 9.18 we describe the status of the store as the declarations and
commands of the program summation are processed according to the
denotational semantics of Pelican, showing the store only when it changes.
Each time sum is invoked, a new location is allocated and bound to n as the
value of loc in the procedure object proc. Therefore env2,loc stands for four
different environments for the body of the procedure depending on the cur-
rent value of loc—namely, 1, 2, 3, or 4. These four locations in the store
correspond to the four activation records that an implementation of Pelican
creates when executing this program.

321

Store
var s : integer; { 0|→undefined }

procedure sum(n:integer) is...

s := 0; { 0|→int(0) }

sum(3) { 0|→int(0), 1|→int(3) }

if n>0 …

s := s+n; { 0|→int(3), 1|→int(3) }

sum(2) { 0|→int(3), 1|→int(3), 2|→int(2) }

if n>0 …

s := s+n; { 0|→int(5), 1|→int(3), 2|→int(2) }

sum(1) { 0|→int(5), 1|→int(3), 2|→int(2), 3|→int(1) }

if n>0 …

s := s+n; { 0|→int(6), 1|→int(3), 2|→int(2), 3|→int(1) }

sum(0) { 0|→int(6), 1|→int(3), 2|→int(2), 3|→int(1), 4|→int(0) }

if n>0 … is false causing termination.

Figure 9.18: The Store While Executing “summation”

Exercises

1. Although we defined an auxiliary function deallocate, we made no use of
it in the denotational semantics of Pelican. Extend the denotational defi-
nition to provide for the deallocation of store locations at block exit.

Hint: Use perform [[D begin C end]] env sto =
release [[D]] env1 (execute [[C]] env1 sto1)

where (env1,sto1) = elaborate [[D]] env sto

 and define the semantic function release.

2. Provide denotational definitions for the read and write commands. Use
triples of the form (sto,inp,outp) to represent the state of a computation.

3. Modify Pelican so that the parameter is passed by

a) reference

b) value-result (an in-out parameter in Ada)

c) constant (a read-only parameter known as an in parameter in Ada).

4. Modify Pelican so that it uses dynamic scoping to resolve nonlocal vari-
able references.

9.5 DENOTATIONAL SEMANTICS WITH ENVIRONMENTS

322 CHAPTER 9 DENOTATIONAL SEMANTICS

5. Modify Pelican so that a procedure may have an arbitrary number of
parameters.

6. Trace the environment and store in the manner of Figures 9.14, 9.15,
9.17, and 9.18 for the following Pelican programs:

a) program trace1 is
var a : integer;
procedure q1 is

begin a := 5 end;
procedure q2 is

var a : integer;
begin a := 3; q1 end;

begin

a := 0; q2; write a
end

b) program trace2 is
var n,f : integer;
procedure fac(n : integer) is

procedure mul(m : integer) is begin f := f*m end;
begin

if n=0 then f:=1
else fac(n-1); mul(n) end if

end;

begin

n := 4; fac(n); write f

end

7. Carefully explain and contrast the following terms used to classify the
semantic domains in a denotational definition of a programming lan-
guage:

• expressible values

• storable values

• denotable values.

Use examples from real programming languages to illustrate a sort of
values that is

a) expressible, storable, and denotable

b) denotable but neither storable nor expressible

c) expressible and storable but not denotable

d) expressible but neither storable nor denotable.

323

8. Suppose that Pelican is extended to include functions of one parameter,
passed by value. The abstract syntax now has productions of the form:

Declaration ::= …
 | function Identifier (Identifier : Type) : Type is Declaration

begin Command return Expression end

Expressions ::= … | Identifier (Expression)

Make all the necessary changes in the denotational definition of Pelican
to incorporate this new language construct.

9. Some programming languages allow functions with no parameters but
require an empty parameter list at the time of the call, as in f(). Why do
these languages have this requirement?

10. Remove the assignment command, parameter passing, the read com-
mand, and the while command from Pelican, calling the new language
BabyPelican. Also consider the values unused and undefined as the same.
Use structural induction (see Chapter 8) to prove that every command
in BabyPelican is semantically equivalent to skip.

11. Construct a prototype denotational interpreter for Pelican in Prolog.

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

In Chapter 3 we developed an attribute grammar to check the context con-
straints imposed by the declarations and type regime of a programming lan-
guage. Here we solve the same problem in the framework of denotational
semantics, mapping a program into the semantic domain Boolean in such a
way that the resulting truth value records whether the program satisfies the
requirements of the context-sensitive syntax. We assume that programs ana-
lyzed in this way already agree with the context-free syntax of the language.

A slightly modified Pelican serves as an example for illustrating this process
of verifying context conditions. We leave procedure declarations and calls to
be handled in an exercise and include the read and write commands now.
The context conditions for Pelican are listed in Figure 9.19, including those
for procedures that will be treated in an exercise.

The context checker has radically simplified denotational semantics since run-
time behavior need not be modeled. In particular, we drop the store and register
only the types of objects in environments, not their values. Figure 9.20 lists the
semantic domains and the signatures of the semantic functions. The semantic
function elaborate enters the type information given by declarations into the
environment in much the same way the attribute grammar constructed a sym-
bol table in Chapter 3. Typify produces the type of an expression given the
types of the identifiers recorded in the (type) environment.

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

324 CHAPTER 9 DENOTATIONAL SEMANTICS

1. The program name identifier lies in a scope outside the main block.

2. All identifiers that appear in a block must be declared in that block or in an
enclosing block.

3. No identifier may be declared more than once at the top level of a block.

4. The identifier on the left side of an assignment command must be declared as a
variable, and the expression on the right side must be of the same type.

5. An identifier occurring as an (integer) element must be an integer variable or an
integer constant.

6. An identifier occurring as a Boolean element must be a Boolean variable or a
Boolean constant.

7. An identifier occurring in a read command must be an integer variable.

8. An identifier used in a procedure call must be defined in a procedure declaration
with the same (zero or one) number of parameters.

9. The identifier defined as the formal parameter in a procedure declaration is con-
sidered to belong to the top level declarations of the block that forms the body of
the procedure.

10. The expression in a procedure call must match the type of the formal parameter
in the procedure’s declaration.

Figure 9.19: Context Conditions for Pelican

Since environments map identifiers to types, we need a semantic domain
Sort to assemble the possible types. Note that we distinguish between con-
stants (integer and boolean) and variables (intvar and boolvar). It is important
to remember that every domain is automatically augmented with an error
value, and every semantic function and auxiliary function propagates error.

Semantic Domains
Boolean = { true, false }

Sort = { integer, boolean, intvar, boolvar, program, unbound }

Environment = Identifier → Sort

Semantic Functions
validate : Program → Boolean

examine : Block → Environment → Boolean

elaborate : Declaration → (Environment x Environment)

→ (Environment x Environment)

check : Command → Environment → Boolean

typify : Expression → Environment → Sort

Figure 9.20: Semantic Domains and Functions for Context Checking

325

We need two environments to elaborate each block:

1. One environment (locenv) holds the identifiers local to the block so that
duplicate identifier declarations can be detected. It begins the block as an
empty envirnoment with no bindings.

2. The other environment (env) collects the accumulated bindings from all
of the enclosing blocks. This environment is required so that the expres-
sions in constant declarations can be typified.

Both type environments are built in the same way by adding a new binding
using extendEnv as each declaration is elaborated. The auxiliary functions
for maintaining environments are listed below (see section 9.5 for definitions):

emptyEnv : Environment

extendEnv : Environment x Identifier x Sort → Environment

applyEnv : Environment x Identifier → Sort

type : Type → Sort
type(integer) = intvar

type(boolean) = boolvar.

The semantic equations in Figure 9.21 show that each time a block is initial-
ized, we build a local type environment starting with the empty environment.
The first equation indicates that the program identifier is viewed as lying in a
block of its own, and so it does not conflict with any other occurrences of
identifiers. This alteration in the context conditions for program identifiers
as compared to Wren makes the denotational specification much simpler.

validate [[program I is B]] =

examine [[B]] extendEnv(emptyEnv,I,program)

examine [[D begin C end]] env = check [[C]] env1

where (locenv1, env1) = elaborate [[D]] (emptyEnv, env)

elaborate [[ε]] (locenv, env) = (locenv, env)

elaborate [[D1 D2]] = (elaborate [[D2]]) ° (elaborate [[D1]])

elaborate [[const I = E]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,typify [[E]] env),extendEnv(env,I,typify [[E]] env))

else error

elaborate [[var I : T]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,type (T)),extendEnv(env,I,type (T)))

else error

elaborate [[var I, L : T]] = (elaborate [[var L : T]]) ° (elaborate [[var I : T]])

Figure 9.21: Checking Context Constraints in Pelican (Part 1)

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

326 CHAPTER 9 DENOTATIONAL SEMANTICS

As declarations are processed, the environment for the current local block
(locenv) and the cumulative environment (env) are constructed incremen-
tally, adding a binding of an identifier to a type for each individual declara-
tion while checking for multiple declarations of an identifier in the local en-

check [[C1 ; C2]] env = (check [[C1]] env) and (check [[C2]] env)

check [[skip]] env = true

check [[I := E]] env =

 (applyEnv (env,I) = intvar and typify [[E]] env = integer)

or (applyEnv (env,I) = boolvar and typify [[E]] env = boolean)

check [[if E then C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[if E then C1 else C2]] env =

(typify [[E]] env = boolean) and (check [[C1]] env) and (check [[C2]] env)

check [[while E do C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[declare B]] env = examine [[B]] env

check [[read I]] env = (applyEnv(I, env) = intvar)

check [[write E]] env = (typify [[E]] env = integer)

typify [[I]] env = case applyEnv(env,I) of

intvar, integer : integer

boolvar, boolean : boolean

program : program

unbound : error

typify [[N]] env = integer

typify [[true]] env = boolean

typify [[false]] env = boolean

typify [[E1 + E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then integer else error
:

typify [[E1 and E2]] env =

if (typify [[E1]] env = boolean) and (typify [[E2]] env = boolean)

then boolean else error
:

typify [[E1 < E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then boolean else error

:

Figure 9.21: Checking Context Constraints in Pelican (Part 2)

327

vironment. If an attempt is made to declare an identifier that is not unbound
locally, the error value results. We assume that all semantic functions propa-
gate the error value.

Checking commands involves finding Boolean or integer expressions where
required and recursively checking sequences of commands that might occur.
The semantic function check applied to a declare command just calls the
examine function for the block. Simple expressions have their types deter-
mined directly. When we typify a compound expression, we must verify that
its operands have the proper types and then specify the appropriate result
type. If any part of the verification fails, error becomes the type value to be
propagated.

A program satisfies the context-sensitive syntax of Pelican if validate pro-
duces true when applied to it. A final value of false or error means that the
program does not fulfill the context constraints of the programming language.

The elaboration of the following Pelican program suggests the need for the
local environment for context checking. Observe the difference if the Boolean
variable is changed to “b”. Note that the expressions “m+21” cannot be typi-
fied without access to the global environment, env.

locnv env

program p is [] [p|→program]

const m = 34; [m|→integer] [m|→integer, p|→program]

begin

declare [] [m|→integer, p|→program]

var c : boolean; [c|→boolvar] [c|→boolvar, m|→integer,

 p|→program]

const c = m+21; error
begin

write m+c;
end

end

9.6 CHECKING CONTEXT-SENSITIVE SYNTAX

328 CHAPTER 9 DENOTATIONAL SEMANTICS

Exercises

1. Apply the validate semantic function to these Pelican programs and elabo-
rate the definitions that check the context constraints for Pelican.

a) program a is b) program b is
const c = 99; const c = 99;
var n : integer; var b : boolean;

begin begin
read n; b := false;
n := c-n; if b and true
write c+1; then b := c end if;
write n b := c>0

end end

c) program c is d) program d is
var x,y,z : integer; var b : boolean;

begin const c = true;
read x; begin
y := z; b := not(c) or false;
declare read b;

var x,z : integer; write 1109
begin end

while x>0 do
x := x-1 end while; e) program e is

declare var m,n : integer;
var x,y : boolean; begin
const y = false; read m;

begin n := m/5;
skip write n+k

end end
end

end

2. Extend the denotational semantics for context checking Pelican to in-
clude procedure declarations and calls.

3. Extend the result in exercise 2 to incorporate procedures with an arbi-
trary number of parameters.

4. Reformulate the denotational semantics for context checking Pelican
using false in place of error and changing the signature of elaborate to

elaborate : Declaration → Environment x Environment
→ Environment x Environment x Boolean

Let typify applied to an expression with a type error or an unbound
identifier take the value unbound.

329

5. Following the denotational approach in this section, implement a con-
text checker for Pelican in Prolog.

9.7 CONTINUATION SEMANTICS

All the denotational definitions studied so far in this chapter embody what is
known as direct denotational semantics. With this approach, each seman-
tic equation for a language construct describes a transformation of argu-
ment domain values, such as environment and store, directly into results in
some semantic domain, such as a new environment, an updated store, or an
expressible value. Furthermore, the results from one construct pass directly
to the language construct that immediately follows it physically in the code.
The semantic equation for command sequencing shows this property best:

execute [[C1 ; C2]] sto = execute [[C2]] (execute [[C1]]sto).

Observe that this semantic equation has the second command C2 working
directly on the store produced by the first command. We return to Wren for
these examples since the points to be made here do not depend on environ-
ments as found in Pelican. As an example, consider the following Wren pro-
gram fragment processed by the semantic function execute : Command →
Store → Store.

s := 0; n := 5;
while n>1 do

s := s+n; n := n–2
end while;
mean := s/2

Figure 9.22 outlines the modifications through which the store progresses as
execute is applied to this sequence of commands. At the same time we sup-
press the applications of evaluate that must be carried out in the analysis—
for example, evaluate [[5]] and evaluate [[n>1]]. Our purpose is to illustrate the
flow of data through commands in direct denotational semantics.

Although many language constructs have perspicuous descriptions in direct
denotational semantics, two problems reduce the applicability of this ap-
proach:

1. When an error occurs in determining the meaning of a language con-
struct, the error must propagate through all of the remaining denotational
transformations in the definition of the construct in a program. If seman-
tic equations detail all the aspects of this propagation, they become clut-
tered with error testing. We avoided such confusion in our semantic equa-
tions by informally describing the nature of error propagation at the cost

9.7 CONTINUATION SEMANTICS

330 CHAPTER 9 DENOTATIONAL SEMANTICS

of lost precision in the definitions. Furthermore, most programming lan-
guage implementations do not propagate errors in this manner; they abort
(terminate) execution on finding a dynamic error. Of course, denotational
definitions do not have to adhere to real implementations, but aborting
execution is an easier way to handle errors, if we only have a way of
describing it.

2. Most programing languages allow radical transfers of control during the
execution of a program—in particular, by means of the goto command.
Such constructs cannot be modeled easily with direct denotational se-
mantics.

sto0 = { }
↓↓↓↓↓

execute [[s := 0]] sto0
↓↓↓↓↓

sto1 = { s|→int(0) }
↓↓↓↓↓

execute [[n := 5]] sto1
↓↓↓↓↓

sto2 = { s|→int(0), n|→int(5) }
↓↓↓↓↓

execute [[while n>1 do s := s+n; n := n–2]] sto2
↓↓↓↓↓

execute [[s := s+n]] sto2
↓↓↓↓↓

sto3 = { s|→int(5), n|→int(5) }
↓↓↓↓↓

execute [[n := n–2]] sto3
↓↓↓↓↓

sto4 = { s|→int(5), n|→int(3) }
↓↓↓↓↓

execute [[s := s+n]] sto4
↓↓↓↓↓

sto5 = { s|→int(8), n|→int(3) }
↓↓↓↓↓

execute [[n := n–2]] sto5
↓↓↓↓↓

sto6 = { s|→int(8), n|→int(1) }
↓↓↓↓↓

execute [[mean := s/2]] sto6
↓↓↓↓↓

sto7 = { s|→int(8), n|→int(1), mean|→int(4) }

Figure 9.22: Passing the Store through a Denotational Analysis

331

Consider again the meaning of command sequencing, “execute [[C1 ; C2]]”.
Direct denotational semantics assumes that C2 will be executed immediately
following C1 and that it depends on receiving a store from “execute [[C1]] sto”.
But what happens if C1 does not pass control on to C2, producing a new store
for C2 to act on? The reasons that C1 may not be immediately followed by C2
include the occurrence of a dynamic error in C1, or because C1 may belong to
a class of commands, called sequencers, including goto, stop, return, exit
(Ada or Modula-2), break (C), continue (C), raise (a language with excep-
tions), and resume (a language with coroutines). Sequencers have the prop-
erty that computation generally does not proceed with the next command in
the physical text of the program.

Returning to a concrete example, regard a sequence (block) of four labeled
commands:

begin L1 : C1; L2 : C2; L3 : C3; L4 : C4 end.

With direct semantics, the sequence has as its meaning

execute [[C4]] ° execute [[C3]] ° execute [[C2]] ° execute [[C1]],

if we ignore the denotations of the labels for now. As a store transformation,
the sequence can be viewed as follows:

sto0 ➞ execute [[C1]] ➞ execute [[C2]] ➞ execute [[C3]] ➞ execute [[C4]] ➞ stofinal.

But what if C3 is the command “goto L1”? Then the store transformation
must develop as follows:

sto0 ➞ execute [[C1]] ➞ execute [[C2]] ➞ execute [[C3]] ➞ execute [[C1]] ➞ ….

To handle these two possibilities, “execute [[C3]]” must be able to make the
choice of sending its result, a store, on to “execute [[C4]]” or to somewhere
else, such as “execute [[C1]]”. Before describing how this choice can be made,
we need to establish the meaning of a label. We take the label Lk, for k=1, 2,
3, or 4, to denote the computation starting with the command Ck and run-
ning to the termination of the program. This meaning is encapsulated as a
function from the current store to a final store for the entire program. Such
functions are known as continuations, and a denotational definition involv-
ing them is called continuation semantics or standard semantics.

Continuations

A continuation describes the change of state (store in this case) that occurs
as a result of executing the program from a particular point until the pro-
gram terminates; that is, a continuation models the remainder of the pro-
gram from a point in the code. The semantic domain of continuations,

Continuation = Store → Store

9.7 CONTINUATION SEMANTICS

332 CHAPTER 9 DENOTATIONAL SEMANTICS

is included with the denotable values since they can be bound to identifiers
(labels). Each label in a program is bound to a continuation in the environ-
ment of the block containing that label.

For the previous block with four commands and no sequencers, we have an
environment env with the following bindings:

Identifier Denotable Value
L1 cont1 = execute [[C1; C2; C3; C4]] env
L2 cont2 = execute [[C2; C3; C4]] env
L3 cont3 = execute [[C3; C4]] env
L4 cont4 = execute [[C4]] env

Note that each continuation depends on an environment that contains the
bindings of all the labels being elaborated so that jumps anywhere in the
block can be made when we allow sequencers. Therefore the signature of
execute includes an environment domain:

execute : Command → Environment → Store → Store

This is not, however, the final signature for execute since we have one more
issue to deal with.

Suppose that C2 is not a sequencer. Then “execute [[C2]]” passes its resulting
store to the rest of the computation starting at C3—namely, the “normal”
continuation cont3. On the other hand, if C3 is “goto L1”, it passes its result-
ing store to the continuation bound to L1—namely, cont1. To allow these two
possibilities, we make the normal continuation an argument to “execute [[Ck]]”
to be executed with normal program flow (as with C2) or to be discarded
when a sequencer occurs (as with C3). Therefore the final signature of ex-
ecute has the form

execute : Command → Environment → Continuation → Store → Store,

and the corresponding semantic equation for command sequencing becomes

execute [[C1 ; C2]] env cont sto = execute [[C1]] env {execute [[C2]] env cont} sto

where “execute [[C2]] env cont” is the normal continuation for C1. The con-
tinuation given to the execution of C1 encapsulates the execution of C2 fol-
lowed by the execution of the original continuation. Traditionally, braces are
used to delimit this constructed continuation. Observe the functionality of
this normal continuation:

execute [[C2]] env cont : Store → Store.

The semantic equation for the goto command shows that the continuation
bound to the label comes from the environment and is executed with the
store passed as a parameter,

execute [[goto L]] env cont sto = applyEnv(env,L) sto

333

with the effect that the normal continuation is simply discarded. In the pre-
vious example, where C2 is skip and C3 is “goto L1”,

execute [[C2]] env cont3 = cont3
and execute [[C3]] env cont4 = applyEnv(env,L1).

Observe that the store argument has been factored out of both of these se-
mantic equations.

The Programming Language Gull

We illustrate continuation semantics with Gull (G for goto), a programming
language that is similar to Wren but contains two sequencers, goto and stop.
Figure 9.23 provides the abstract syntax for Gull.

Syntactic Domains
P : Program L : Label O : Operator

S : Series I : Identifier N : Numeral

C : Command E : Expression

Abstract Production Rules
Program ::= program Identifier is begin Series end

Series ::= Command

Command ::= Command ; Command | Identifier := Expression

| if Expression then Series else Series

| while Expression do Series | skip | stop

| goto Label | begin Series end | Label : Command

Expression ::= Identifier | Numeral | - Expression

 | Expression Operator Expression

Operator ::= + | – | * | / | = | <= | < | > | >= | <>

Label ::= Identifier

Figure 9.23: Abstract Syntax of Gull

Gull permits only integer variables and has simply the if-then-else selection
command for economy. The syntactic domain “Series” acts as the syntactic
domain that corresponds to blocks, thus making the bodies of if and while
commands into local scoping regions. A local environment for labels can also
be created by an anonymous block using “begin Series end”. Although a
series is only a command in the abstract syntax, it serves as a separate
syntactic category to allow for the elaboration of labels in the command. The
syntax of Gull must have context constraints that forbid multiple labels with
the same identifier in a series and a jump to an undefined label.

9.7 CONTINUATION SEMANTICS

334 CHAPTER 9 DENOTATIONAL SEMANTICS

We need to elaborate labels at the top level and also inside compound com-
mands, ensuring correct denotations for language constructs, such as those
found in the program shown below. This poorly written program is designed
to illustrate the environments created by labels in Gull. Figure 9.24 displays
the nesting of the five environments that bind the labels in the program.

program labels is

begin

s:= 0; m := 1;

outer : if m<=5

then n := 1;

 inner : if n<= 4

then s := s+m n;

 goto next;

 next : n := n+1;

 goto inner

 else m := m+1;

 goto outer end if

 else goto done end if;

 done : answer := s

end

*

env1

env2

env3

env4

env5

Figure 9.24: A Gull Program

Figure 9.25 provides the semantic domains and the signatures of the seman-
tic functions for the continuation semantics of Gull. As already mentioned,
continuations are functions from store to store, and environments map la-
bels to continuations, the only denotable values in Gull. Therefore we do not
bother to put tags on them. The semantic functions indicate that only com-
mands depend on continuations, sometimes called command continuations.
A deeper investigation of continuation semantics would study expression
continuations and declaration continuations. An expression continuation
encapsulates the rest of the computation following the expression being evalu-
ated. These are the continuations in Scheme, which allows the manipulation
of such continuations as first-class objects in the same way as any other

335

functions. Declaration continuations are necessary to model an escape from
the elaboration of a declaration, say because of an error. These other kinds of
continuations are beyond the scope of this text. They are covered in other
books (see the further readings at the end of the chapter).

Semantic Domains
EV = int(Integer) + bool(Boolean)

SV = int(Integer)

DV = Continuation

Store = Identifier → SV + undefined

Continuation = Store → Store

Environment = Label → Continuation + unbound

Semantic Functions
meaning : Program → Store

perform : Series → Environment → Continuation → Store → Store

execute : Command → Environment → Continuation → Store → Store

evaluate : Expression → Store → EV

Figure 9.25: Semantic Domains and Semantic Functions of Gull

Auxiliary Functions

The semantic equations defining the semantic functions require a number of
auxiliary functions that have been presented previously. When we specify
the meaning of a program, an initial environment, emptyEnv, an initial store,
emptySto, and an initial continuation, identityCont, must be supplied. The
initial continuation is a function that takes the store resulting at the end of
the execution of the entire program and produces the final “answer”. We take
the final store as the answer of a program, since Gull has no output. The
initial continuation can thus be the identity function.

emptySto : Store

updateSto : Store x Identifier x SV → Store

applySto : Store x Identifier → SV

emptyEnv : Environment

extendEnv : Environment x Label+ x Continuation+ → Environment

applyEnv : Environment x Label → Continuation

identityCont : Continuation

identityCont = λ sto . sto.

9.7 CONTINUATION SEMANTICS

336 CHAPTER 9 DENOTATIONAL SEMANTICS

Since the denotational semantics of Gull elaborates all the labels in a series
in one semantic equation, extendEnv takes lists of labels and continuations
as arguments. An exercise asks the reader to define this auxiliary function.

Semantic Equations

The semantic equations for Gull are detailed in Figure 9.26. We examine the
specification of execute first, assuming that the environment argument al-
ready contains bindings for all visible labels. Command sequencing has al-
ready been described. Executing the skip command makes no change in the
store, so the current store is passed to the current continuation to continue
the execution of the program. The stop command abandons the current con-
tinuation and returns the current store, which thereby becomes the final
store terminating the denotational analysis. The if and while commands are
analogues of those for direct semantics, passing the current continuation to
appropriate series. The only exception occurs when the while test is false
and the effect is like a skip command. The assignment command calls the
current continuation with a store reflecting the new value that has been
stored.

Since our denotational specification of Gull ignores expression continuations,
the semantic equations for evaluate remain the same as those for Wren.

The function perform, specifying the meaning of a series, assumes a list of n
commands, all possessing labels. It proceeds by binding each label to the
appropriate continuation that encapsulates the rest of the code from the
point of the label in the program together with an environment that includes
all the bindings being established in the series. Observe that each defined
continuation executes one command with the continuation that follows the
command. The last continuation contn executes the last command with the
continuation that was originally passed to the series, representing the rest of
the program following the series. Once the labels have been elaborated, the
first continuation cont1, which embodies the entire list of commands, is in-
voked.

The Error Continuation

Gull does not handle errors any better than Wren, even though we suggested
earlier that continuation semantics allows us to abort execution when a dy-
namic error occurs. To treat errors properly, we need expression continua-
tions, so that when division by zero or accessing an undefined variable hap-
pens, an error continuation can be called at that point. Our specification of
Gull has to inspect the result of evaluating an expression at the command

337

level and call an error (command) continuation there. The semantic equation
for the assignment command then takes the form

execute [[I := E]] env cont sto =
if evaluate [[E]] sto=error

then errCont sto else cont updateSto(sto,I,evaluate [[E]] sto).

meaning [[program I is begin S end]] =

perform [[S]] emptyEnv identityCont emptySto

perform [[L1: C1; L2: C2; … ; Ln: Cn]] env cont = cont1

where cont1 = execute [[C1]] env1 cont2
cont2 = execute [[C2]] env1 cont3

:
contn = execute [[Cn]] env1 cont

and env1 = extendEnv(env,[L1, L2, … , Ln],[cont1, cont2, … , contn])

execute [[I := E]] env cont sto = cont updateSto(sto,I,evaluate [[E]] sto)

execute [[skip]] env cont sto = cont sto

execute [[stop]] env cont sto = sto

execute [[if E then S1 else S2]] env cont sto =

if p then perform [[S1]] env cont sto else perform [[S2]] env cont sto

where bool(p) = evaluate [[E]] sto

execute [[while E do S]] env cont sto = loop

where loop env cont sto = if p then perform [[S]] env {loop env cont} sto

else cont sto

where bool(p) = evaluate [[E]] sto

execute [[C1 ; C2]] env cont sto = execute [[C1]] env {execute [[C2]] env cont} sto

execute [[begin S end]] env cont sto = perform [[S]] env cont sto

execute [[goto L]] env cont sto = applyEnv(env,L) sto

execute [[L : C]] = execute [[C]]

evaluate [[I]] sto = applySto(sto,I)

evaluate [[N]] sto = value [[N]]

evaluate [[-E]] = int(minus(0,m)) where int(m) = evaluate [[E1]] sto

evaluate [[E1 + E2]] sto = int(plus(m,n))

where int(m) = evaluate [[E1]] sto and int(n) = evaluate [[E2]] sto

:

Figure 9.26: Semantic Equations for Gull

9.7 CONTINUATION SEMANTICS

338 CHAPTER 9 DENOTATIONAL SEMANTICS

For the if command, the value of “evaluate [[E]] sto” must be examined before
executing one of the branches.

execute [[if E then S1 else S2]] env cont sto =
if evaluate [[E]] sto=error

then errCont sto
else if p then perform [[S1]] env cont sto

else perform [[S2]] env cont sto
where bool(p) = evaluate [[E]] sto.

The error continuation errCont performs in the same way as the identity
continuation, except that it should signal an error condition some way, say
by displaying an error message. For our purposes, we simply take errCont =
identityCont.

Exercises

1. Give a definition of extendEnv for lists of identifiers and continuations.

2. Describe the continuations used in analyzing the following program
denotationally, and give the bindings in its environment:

program fact is
begin

f := 1; n := 6;
start : if n>=1 then goto rest else stop end if;
 rest : f := f*n; n := n–1; goto start

end

3. Add an exit command to Gull and provide a denotational definition for
its semantics. Executing an exit causes control to transfer to the point
following the closest enclosing begin-end construct. Explain why it is
not sufficient to exit from the enclosing series.

4. Define the denotational semantics of a programming language that com-
bines the features of Gull and Pelican.

5. Construct a denotational interpreter for Gull in Prolog. See the further
readings for a suggestion on handling continuations as Prolog struc-
tures.

339

9.8 FURTHER READING

Denotational semantics grew out of the tradition of mathematical logic, and
early versions were characterized by single-letter identifiers, the Greek al-
phabet, and a heavy use of concise and sometimes cryptic mathematical
notation. Under the influence of the principles of good software design, more
recent expositions of denotational semantics possess enhanced readability
as a result of the use of meaningful identifiers and the concepts of data
abstraction.

One of the best descriptions of denotational semantics can be found in David
Schmidt’s book [Schmidt88], which covers most of the material that we de-
scribe in this chapter as well as additional material and examples treating
compound data structures, applicative languages, expression continuations,
and concurrency.

The traditional reference for denotational semantics has been the book by
Joseph Stoy [Stoy77]. Many of the later books were based on his work. The
books by Michael Gordon [Gordon79], Frank Pagan [Pagan81], and Lloyd
Allison [Allison86] contain short but thorough explanations of denotational
semantics with many good examples, although the dense notation in them
requires careful reading. The books by Allison and Gordon have clear pre-
sentations of continuation semantics. Moreover, Allison discusses at some
length the possibility of implementing a denotational definition using an im-
perative programming language to construct interpreters. His examples were
one of the inspirations for our denotational interpreter of Wren written in
Prolog.

Several textbooks published in the past few years provide additional examples
of denotational specifications and a look at the various notational conven-
tions employed in denotational semantics. These books, [Meyer90], [Watt91],
and [Nielson92], are written at about the same level as our presentation. The
Nielson book discusses implementing denotational definitions using the func-
tional language Miranda. David Watt’s very readable text uses notational
conventions that are close to ours. Watt also suggests using denotational
semantics to verify the context constraints on programming languages. His
text contains a complete denotational specification of an imperative program-
ming language called Triangle. He suggests using Standard ML as a vehicle
for constructing a denotational interpreter for Triangle based on the specifi-
cation. Watt coined the term semantic prototyping for the process of imple-
menting formal specifications of programming languages. Susan Stepney gives
a denotational semantics for a small imperative programming language and
a hypothetical machine language (using continuation semantics). After de-
scribing a compiler from one the other, she verifies it relative to the formal
specifications and implements the system in Prolog [Stepney93].

9.8 FURTHER READING

340 CHAPTER 9 DENOTATIONAL SEMANTICS

More formal treatments of denotational semantics can be found in [Mosses90],
[Tennent91], and [Winskel93]. The book by Tennent contains an interesting
discussion of compositionality. He suggests [Janssen86] for a historical re-
view of the notion of compositional definitions. Tennent has also written an
undergraduate textbook on the concepts of programming languages that is
based on denotational principles [Tennent81].

Most of the descriptions of implementing denotational semantics have avoided
the problems inherent in continuation semantics. For a short presentation of
denotational interpreters that handle continuations, see [Slonneger93], where
implementations in Standard ML and Prolog are explained and compared.

