
Copyright 2004 by Ken Slonneger Object-Oriented Design 1

Object-Oriented Design

The Game of War
Illustrate the process of designing an object-oriented
solution to a small problem by simulating War, a two-
person game for children that uses a deck of playing
cards.
The rules of the game act as an initial specification of the
problem.

A card deck consists of 52 playing cards, each of which
has a numeric value between 1 and 13, called the rank
of the card, and one of four suits (clubs, diamonds,
hearts, and spades).
The values 1, 11, 12, and 13 have special names: ace,
jack, queen, and king, respectively.
To play the game we deal the entire deck of cards to
two players.
Each player has a pile of 26 cards face down on the
table.
During a turn of the game, the players show the top
cards from their piles, and the player with the higher-
ranking card wins both of the cards, putting them face-
up in a pile.
For the purpose of comparison, aces count as highest.
If the cards shown by the players have the same rank,
each player places the number of cards equal to that
rank face down on the table.

2 Object-Oriented Design Copyright 2004 by Ken Slonneger

The last cards played by each player are turned over
and compared.
The higher value wins all of the cards that have been
played this turn.
If another tie occurs, the process is repeated.
When a player finishes playing all of the cards in his or
her playing pile, the cards won in previous turns are
turned over and become a new playing pile.
If either player cannot complete a turn for lack of cards,
the other player wins the game.

The goal of this program is to simulate the playing of a
game of War with two players, named Ernie and Burt.

Analysis
After reviewing the specification of the problem, several
points need clarification.
1. Implied in the game is the fact that we need to shuffle

the deck of cards before the cards are dealt to the
players.

2. Note that each player has two piles of cards: The pile
of cards from which the player takes cards to play a
turn and a pile that holds the cards won during the
turns. When the playing pile becomes exhausted, the
pile of cards won by the player so far becomes a new
playing pile.

One way to identify the concepts that may become the
objects of the program is to analyze the specification in
terms of parts of speech.

Copyright 2004 by Ken Slonneger Object-Oriented Design 3

• Nouns in the specification become objects in the
solution, properties of objects, or values of properties.

• Verbs in the specification frequently describe the
behavior (methods) of the objects.

Begin the analysis by identifying nouns in the
specification.

card deck
playing card
numeric value
rank of the card
suit
clubs, diamonds
hearts, spades
ace, jack, queen,
king

game
player
pile
turn
top card
higher-ranking
card
same rank
number of cards

last card
tie
process
both of the cards
cards that have
been played
cards won in
previous turns
playing pile
lack of cards

Concepts
During a first pass several of the nouns seem to suggest
concepts that have a good chance of being objects in the
program.

card deck, playing card, game, player, and pile
The concept of a game may seem strange at first, but we
need some controlling force to manage the turns of the
game and evaluate the results.
We know that a card deck is made up of 52 playing cards,
and that the game will have two players.

4 Object-Oriented Design Copyright 2004 by Ken Slonneger

From the observation made earlier, we know that each
player will have two piles of cards: a playing pile and a
pile of cards won.

Note that many of the other nouns in the list are variations
of these five basic ideas: “top card”, “higher-ranking card”,
“last card”, and “both of the cards” all involve the concept
of playing card.
The nouns “cards won in previous turns” and “playing pile”
are descriptions of the notion of pile.
The terms “numeric value”, “ranks of the card”, “suit”, and
“same rank” are properties of cards.
The nouns “number of cards” and “lack of cards” can be
properties of a card deck or of a pile of cards.
A “turn” is an attribute that the game will keep track of as
the playing proceeds.
A “tie” seems to be a property of a game.
The terms “clubs”, “diamonds”, “hearts”, “spades”, “ace”,
“jack”, “queen”, and “king” are values of the properties suit
and rank.
That leaves two nouns from the list, “process” and “cards
that have been played”.
The notion of repeating the process will be embodied in
the operation that controls the playing of the game.
The “cards that have been played” refer neither to a
player’s playing pile nor to the pile of cards won. These
cards are the ones placed on the table when a tie occurs,
a situation that is call a “war” in the game. We may be
talking about some other kind of pile, but let us postpone
this issue till later.

Copyright 2004 by Ken Slonneger Object-Oriented Design 5

Relationships between Concepts
• A game has two players and a deck of cards.
• A player has two piles of cards.
• A deck has 52 cards.
• A pile has a bunch of cards.

Notice that no “is-a” relationships appear in this analysis.
All of the relations take the form of “has-a” or “has-some”,
which means we will assemble the solution using
composition of objects and not inheritance.

The following diagram shows the concepts and their
relationships that we have discovered so far.

6 Object-Oriented Design Copyright 2004 by Ken Slonneger

Behavior
We discover at least some of the operations needed in
the solution by analyzing the verbs that occur in the
specification.

play the game
shuffle the deck
deal
show cards
win cards

place number of
cards
compare cards
win
tie occurs
repeat process

player finishes
are turned over
cannot complete
turn
win the game

The main task in describing the behavior that we need
comes in the assigning of operations to the concepts that
we have identified.
Which objects will be responsible for which behavior?
Below we list each of the concepts, the candidates for
classes, and try to place the verbs according to our
analysis of responsibilities.

Card
compare cards

CardDeck
shuffle the deck
deal

Copyright 2004 by Ken Slonneger Object-Oriented Design 7

Player
show cards
win cards
place number of cards

Pile
are turned over

Game
play the game
repeat process
win the game

Unassigned (deal with these verbs later)
tie occurs
cannot complete turn
player finishes

At this point we move from the analysis phase to the
design phase, although the boundary between the two
can be a bit ambiguous.
We are ready, however, to start making some decisions
about classes, their methods, and their properties.

8 Object-Oriented Design Copyright 2004 by Ken Slonneger

Design of Card
The card concept clearly defines a kind of object, which
can be modeled by a class we call Card.
So far the only behavior that we have identified is the
ability to compare the values on two cards.
To integrate the Card class into the world of Java, we
define Card to implement the interface Comparable and
supply a compareTo method.
To enable the program to display the progress of a game
of War we need a way to exhibit each card. We provide
this behavior by overriding the toString method from
Object.
The Card objects that the program creates will be
immutable objects, so we have no need for mutator
methods.
But accessor methods seem appropriate. Call them
getValue and getSuit, since a play card is determined by
a value and a suit.
A constructor uses these two pieces of information to
create a card.

Implementation of Card
A Card object is defined by its value (or rank) and its suit.
We represent the value using the integers from 1 to 13.
Although the suit can be represented as a String object,
we code the suits with the integer values 1, 2, 3, and 4.
The class definition is shown below. We add an equals
method that is compatible with compareTo.

Copyright 2004 by Ken Slonneger Object-Oriented Design 9

class Card implements Comparable
{

Card(int r, int s)
{

rank = r;
suit = s;

}
int getRank()
{

return rank;
}
int getSuit()
{

return suit;
}
public int compareTo(Object ob)
{

Card other = (Card)ob;
int thisRank = this.getRank();
int otherRank = other.getRank();
if (thisRank == 1) thisRank = 14; // make aces high
if (otherRank == 1) otherRank = 14;
return thisRank - otherRank;

}
public boolean equals(Object ob)
{

if (ob instanceof Card)
{

Card other = (Card)ob;
return value==other.value && suit==other.suit;

}
else return false;

}

10 Object-Oriented Design Copyright 2004 by Ken Slonneger

public String toString()
{

String val;
String [] suitList =

{ "", "Clubs", "Diamonds", "Hearts", "Spades" };
if (rank == 1) val = "Ace";
else if (rank == 11) val = "Jack";
else if (rank == 12) val = "Queen";
else if (rank == 13) val = "King";
else val = String.valueOf(rank); // int to String
String s = val + " of " + suitList[suit];
for (int k=s.length()+1; k<=17; k++) s = s + " ";
return s;

}
private int rank;
private int suit;

}

toString produces a string of the form "10 of Clubs".
Since these strings will have various lengths depending
on the value and the suit, add spaces to bring the length
up to 17 characters, the width of the longest string,
"Queen of Diamonds".

Copyright 2004 by Ken Slonneger Object-Oriented Design 11

Design of CardDeck
A CardDeck object will contain an array of 52 Card
objects, which are created by the Card constructor,
whose parameters are an integer value and an integer
code representing the suit.
Since the cards will be dealt during the game, we
maintain a property (an instance variable) to hold the
number of cards left in the deck. That number counts
down from 52 to 0 as the cards are dealt.
The deal method returns cards from the array starting at
position 51. Since the method promises to return an object,
we have it return null if it is called with an empty deck.
A CardDeck object responds to a method getSize that
returns the number of card left in the deck as it is dealt.

Implementation of CardDeck
The job of creating the 52 cards is relegated to a private
method fill that uses nested for loops to generate the 13
values and 4 suits.

class CardDeck
{

CardDeck()
{

deck = new Card [52];
fill();

}

12 Object-Oriented Design Copyright 2004 by Ken Slonneger

void shuffle()
{

for (int next = 0; next < numCards-1; next++)
{

int r = myRandom(next, numCards-1);
Card temp = deck[next];
deck[next] = deck[r];
deck[r] = temp;

}
}
Card deal()
{

if (numCards == 0) return null;
numCards--;
return deck[numCards];

}
int getSize()
{

return numCards;
}
private void fill()
{

int index = 0;
for (int r = 1; r <= 13; r++)

for (int s = 1; s <= 4; s++)
{

deck[index] = new Card(r, s);
index++;

}
numCards = 52;

}

Copyright 2004 by Ken Slonneger Object-Oriented Design 13

private static int myRandom(int low, int high)
{

return (int)((high+1-low)*Math.random()+low);
}
private Card [] deck;
private int numCards;

}

Design of Game, Player, and Pile
These three concepts are not as easily separated as
Card and CardDeck.
We need to understand the playing of a turn to determine
the behavior required of the Player objects and the Pile
objects.
In fact, we need to specify the actions in a turn to be
certain that we have all the behavior that will be required.
So at this point we step aside from the object-oriented
design process and enter the world of procedural
programming to describe the algorithm embodied in the
playing of the game. This behavior will belong to an
instance method of Game, called play.
Since a game could conceivably go on forever, we restrict
a game of War to at most 100 turns.
The algorithm for the game is described as a sequence of
steps.
1. Create a deck of cards.
2. Shuffle the deck of cards.

14 Object-Oriented Design Copyright 2004 by Ken Slonneger

3. Create two players named Ernie and Burt.
4. Deal all of the cards to the two players.
5. Manage the turns, stopping when one player has

insufficient cards to continue or after 100 turns.
One turn proceeds as follows.
5.1 Ensure that both players have at least one card.

Otherwise stop the game.
5.2 Have each player produce one card and compare

the two cards.
5.3 If one card is higher in rank, give the cards to the

player with the higher card and end the turn.
5.4 If the cards are of the same rank, we have a war.

5.4.1 Check that each player has enough cards
to continue. Otherwise end the game.

5.4.2 Each player produces a number of cards
equal to the rank of cards that caused the
tie.

5.4.3 If the last cards played are of different rank,
give all the cards played in this turn to the
winning player and end the turn.

5.4.4 If the last cards played are of equal rank,
go back to step 5.4.1.

When the game has finished, we need to know the
winner.
An instance method getWinner for the Game object
returns the Player object for the winner, the player with
the most cards.
In the both players finish with the same number of cards,
getWinner returns the value null.

Copyright 2004 by Ken Slonneger Object-Oriented Design 15

After developing the algorithm for play, we have a better
understanding of the behavior required of Player and Pile.

Sometimes we add two cards one at a time to the pile of
won cards, and sometimes we add a possibly large
group of cards after a war.

To assemble these groups of cards, we give the Game
object a pile of its own to collect the cards played in a
war. The class diagram needs to be revised.

Player objects and Pile objects will have two methods for
adding cards, one for individual cards when no tie occurs
and one to add a Pile object after a war.

As a summary we list the methods needed in the three
classes being designed.
Pile Methods

int getSize() // number of cards in this pile
void clear() // initialize this pile (to empty)
void addCard(Card c) // add one card to this pile
void addCards(Pile p) // add group of cards to this pile
Card nextCard() // play a card from this pile

16 Object-Oriented Design Copyright 2004 by Ken Slonneger

Player Methods
int numCards() // number of cards held by this player
void collectCard(Card c) // collect one card
void collectCards(Pile p) // collect a group of cards
Card playCard() // play one card
void useWonPile() // transfer cards won to playing pile
String getName() // return the name of player

Game Methods
void play() // play the game
Player getWinner() // return winning player or null
boolean enoughCards(int n)

// true if both players have at least n cards
The last method tells whether both players have enough
cards, the parameter, to continue the game.

Implementation of Game, Player, and Pile
A Pile object holds an array to contain its cards.
Two instance variables indicate the portion of the array
that contains the cards belonging to the pile.

end is the position into which the next card is added
to the pile.
front is the position from which the next card will be
taken provided front < end.

A pile is empty if front has the same value as end.

Copyright 2004 by Ken Slonneger Object-Oriented Design 17

class Pile
{

Pile()
{

pile = new Card[52];
front = 0; end = 0;

}

int getSize()
{

return end - front;
}

void clear()
{

 front = 0; end = 0;
}

void addCard(Card c)
{

pile[end] = c;
end++;

}

void addCards(Pile p)
{

while (p.getSize() > 0)
addCard(p.nextCard());

}

18 Object-Oriented Design Copyright 2004 by Ken Slonneger

Card nextCard()
{

if (front == end)
return null; // should not happen

Card c = pile[front];
front++;
return c;

}
private Card [] pile;
private int front, end; // front ≤ end

}

The only methods that need explanation in the Player
class are playCard and useWonPile.
If the player has no cards at all, an outcome that should
not happen if the game is played correctly, the method
playCard returns null.
If a player finds his or her playing pile is empty, the pile of
cards won by that player becomes a new playing pile.
The useWonPile method initializes the playing pile so that
its position variables, front and end, will not exceed its
array size, adds the cards from the pile of won cards, and
finally initializes (empties) that pile.

Copyright 2004 by Ken Slonneger Object-Oriented Design 19

class Player
{

Player(String n)
{

name = n;
playPile = new Pile();
wonPile = new Pile();

}
Card playCard()
{

if (playPile.getSize() == 0)
useWonPile();

if (playPile.getSize() > 0)
return playPile.nextCard();

return null;
}
String getName()
{

return name;
}
void collectCard(Card c)
{

wonPile.addCard(c);
}
void collectCards(Pile p)
{

wonPile.addCards(p);
}

20 Object-Oriented Design Copyright 2004 by Ken Slonneger

void useWonPile()
{

playPile.clear(); // reset front and end to 0
playPile.addCards(wonPile);
wonPile.clear(); // reset front and end to 0

}
int numCards()
{

return playPile.getSize() + wonPile.getSize();
}
private Pile playPile, wonPile;
private String name;

}

Since the card deck and the pile in the Game class are
only used in the play method, they can be local variables.
The play method follows the outline of the algorithm
given earlier.
The cards from the card deck are dealt into the “won”
piles of the two players, after which these piles are
turned into the playing piles for the players.

class Game
{

void play()
{

CardDeck cd = new CardDeck();
cd.shuffle();
p1 = new Player("Ernie");
p2 = new Player("Burt");

Copyright 2004 by Ken Slonneger Object-Oriented Design 21

while (cd.getSize() >= 2)
{

p1.collectCard(cd.deal());
p2.collectCard(cd.deal());

}
p1.useWonPile();
p2.useWonPile();
Pile down = new Pile(); // Pile for cards in a war

loop: for (int t=1; t<=100; t++)
{

if (!enoughCards(1)) break loop;
Card c1 = p1.playCard();
Card c2 = p2.playCard();
System.out.println("\nTurn " + t + ": ");
System.out.print(p1.getName() + ": " + c1 + " ");
System.out.print(p2.getName() + ": " + c2 + " ");
if (c1.compareTo(c2) > 0)
{

p1.collectCard(c1); p1.collectCard(c2);
}
else if (c1.compareTo(c2) < 0)
{

p2.collectCard(c1); p2.collectCard(c2);
}
else // War
{

down.clear();
down.addCard(c1); down.addCard(c2);
boolean done = false;
do
{ int num = c1.getRank();

if (!enoughCards(num)) break loop;

22 Object-Oriented Design Copyright 2004 by Ken Slonneger

System.out.print("\nWar! Players put down ");
System.out.println(num + " card(s).");
for (int m=1; m<=num; m++)
{

c1 = p1.playCard(); c2 = p2.playCard();
down.addCard(c1);
down.addCard(c2);

}
System.out.print(p1.getName()+": "+ c1 + " ");
System.out.print(p2.getName()+": " + c2 + " ");
if (c1.compareTo(c2) > 0)
{ p1.collectCards(down);

done = true;
}
else if (c1.compareTo(c2) < 0)
{ p2.collectCards(down);

done = true;
}

}
while (!done);

} // end of for t=1 to 100
System.out.println(p1.numCards() + " to "

+ p2.numCards());
}

}

boolean enoughCards(int n)
{

if (p1.numCards() < n || p2.numCards() < n)
return false;

return true;
}

Copyright 2004 by Ken Slonneger Object-Oriented Design 23

Player getWinner()
{

if (p1.numCards() > p2.numCards())
return p1;

else if (p2.numCards() > p1.numCards())
return p2;

else
return null;

}
private Player p1, p2;

}

Finally, we need a class to instantiate a Game object, call
its play method, and report who won the game.

public class War
{

public static void main(String [] args)
{

Game g = new Game();
g.play();
Player winner = g.getWinner();
if (winner == null) System.out.println("Tie game.");
else System.out.println("\nWinner = "

+ winner.getName());
}

}

24 Object-Oriented Design Copyright 2004 by Ken Slonneger

Default Packages

We have de-emphasized Java packages because
more important topics involving programming and
object-oriented design needed to be covered.

We have relied on default packages to collect our classes
and interfaces, making them visible to each other.

Java allows two ways to create a default, anonymous
package, which we illustrate with the six classes that
solve the War Game problem.

1. If we put all six classes into the same source file,
called War.java, they form a package with no name.
Since the class War has the main method, it must be
declared public, but the other five classes can have
no visibility modifier (they have package visibility).

2. To be able to execute a Java class, the current
directory (folder) containing that class must be in the
path for the Java class loader.
Therefore, all classes in the current directory form
an anonymous package.
These classes may be public or package visible
(no modifier), although any class with a main method
that we plan to execute must be public.

Copyright 2004 by Ken Slonneger Object-Oriented Design 25

Building a Named Package
Using default packages works fine for the small pro-
grams that we write as we learn Java, but any Java
software that entails a large number of classes and
interfaces that we expect to share with others should
be inserted into a package that other users will import
to get access to the software.
To illustrate the process of creating a package, we
build a package, named war, containing the five
classes that solve the problem.
The class that controls the program, War.class, will
remain outside of the package.
First, we create a directory, called war, that resides in
the same directory that contains War.java, and move
the other five source files into it. Here is the directory
structure.

War
| War.java
| war

| Card.java
| CardDeck.java
| Pile.java
| Player.java
| Game.java

Before we can compile these files, any classes and
methods accessed from War.java must be made public.
That means the classes Player and Game and the
methods play, getWinner, and getName must have a
public modifier.

26 Object-Oriented Design Copyright 2004 by Ken Slonneger

In fact we may choose to export all five of the classes
and most of their methods.
We can do this by placing public on the class headers
and the method headers.
The source files for each of the five classes that go into the
package war must begin with a statement, package war;.
The source file for War.java must begin with import war.*;.
To compile the classes we need to be in the War
directory.
All the classes in the package must be compiled using
the path to the source files.
If you compile from a command line in your operating
system, use these commands.

javac war/Card.java
javac war/CardDeck.java
javac war/Pile.java
javac war/Player.java
javac war/Game.java
javac War.java

The War class is executed as you would expect.
java War

But if one of the package classes has a main method that
you want to execute, say a test routine in CardDeck that
deals a few cards, execute it from the upper directory and
give the fully qualified name of the class.

java war.CardDeck

