
The Computer: A Human Brain Assistant

The current methodology for using computers to solve problems
can be summarized as a generalization of Polya's four-step
methodology [5] used in teaching mathematics, and consist of
the following actions performed by the computer user:

1. Formulate the problem;
2. Construct an algorithm that solves the problem;
3. Program (code) the problem-solving algorithm into a

program in the computer's language;
4. Execute the program obtained in (3) by providing it with data

representing an instance of the problem to be solved;
5. Validate the result.

This methodology was used with the first computers to solve
problems in engineering and mathematics. In the meantime,
computers have evolved and become instruments used in solving
problems from all aspects of human activity, with algorithms
being executed by the computer, thus adding the step of
programming. Unfortunately, current computer usage relies on
software whose complexity increases proportionally with the
number of computer application domains. Since the computer's
application domains encompass all areas of human activity,
software complexity threatens to destroy the computer itself [4].
This phenomenon leads to a contradiction between the tool's
(computer's) complexity and the difficulty of using it (user).
Therefore, to support current computing technology, it is
necessary to develop a problem-solving methodology that uses

the computer as a brain tool for executing algorithms from all
areas of modern life.

2. Limitations of the Current Methodology

The contradiction generated by using the computer is currently
resolved by developing software tools that allow users to avoid
using the computer language in the problem preparation process
(programming). But the language of these software tools
complicates the problem preparation process for the computer
even more. Due to the spiral of knowledge, the number and
complexity of new computer application domains increases
exponentially with the successes of computer applications, thus
leading to the exponential growth of software complexity [3]. In
turn, this leads to an increased demand for professional expertise
in using computers, thus posing significant educational challenges
[2]. This contradiction can be eliminated by employing a computer
usage methodology based on the user's natural language, similar
to the methodology for using all tools developed by humans to
improve their activity.

3. A New Computer Usage Methodology

Let's now try to resolve the fundamental contradiction of
computer usage differently. To do this, let's assume that each
domain of computer usage is equipped with a virtual machine
characteristic of the domain, capable of computationally
interpreting the domain's concepts. This means that each concept
of the domain is characterized by a term of the natural language,
which is associated with a computational model specifying the
term's meaning. For example, a cell in biology is characterized by

the term "cell" associated with a data model, most often a graph,
which expresses the term's meaning using terms for the cell's
components, such as nucleus, membrane, genes, etc., each in turn
specified by a natural language term and a data model explaining
the term's meaning. In this way, a natural language sentence
becomes associated with a data model specifying its meaning.

3.1 The Algorithmic Language of the Domain

Following the idea presented above, an expert in an application
domain will use the computer to solve her problems by
expressing problem solutions in terms of the domain's concepts.
That is, the domain expert will communicate with her computer
using the domain's natural language, called here the Domain
Algorithmic Language (DAL). Through school education, domain
experts integrate domain concepts and their meanings into their
students' brains. However, only the term is used in domain
language sentences, and the phrase's meaning remains an
abstraction. Thus, the domain's natural language is part of the
natural language, which is ambiguous and therefore difficult to
use as a computational object. However, by associating domain
language terms with data models representing their meanings
and making these models visible, the domain language's
ambiguity is resolved, and DAL can be easily manipulated with the
computer. For example, the concept "cell" in biology is not
confused with the concept "cell" in telephony or automata theory
unless the user is not a domain expert. But in this case, the used
concept has the meaning of the user's domain (student and/or
expert).

The hypothesis we use here is that during the school learning
process, domain concepts can be memorized both in the
student's brain, as natural language terms, and on an information
support specific to the domain, as a computational representation
of the term's meaning. For example, Pythagoras' theorem in
geometry is recorded on the information support as a linguistic
expression associated with its proof, recorded on the same
information support, as follows: 	holds	AB²	+	AC²	=	BC².	•△	ABD,	△ 	
+	AC²	=	BC	×	BD	+	BC	×	DC.	But	BD	+	DC	=	BC,	so	equality,	we		

Begin Concept:

Term: Pythagorean Theorem;
 Statement: In a right triangle △ABC, where A is the right angle,
BC is the hypotenuse, and AB and AC are the legs, the following
equality holds: AB² + AC² = BC².
 Proof: By construction. We draw the altitude from A, thus
obtaining the similar triangles △ABD, △ADC, and △ABC. From the
similarity of △ABC with △ABD, we get BC/AB = AB/BD, hence AB²
= BC × BD. Similarly, from the similarity of △ABC with △ADC, we
get AC² = BC × DC. Summing AB² + AC² = BC × BD + BC × DC.
But BD + DC = BC, so factoring BC in the previous equality, we get
AB² + AC² = BC × (BD + DC), hence the result AB² + AC² = BC².

 End Concept.

In the article [7], we called this learning style the Computational
Emancipation of the Problem Domain (CEAD). CEAD-ing a domain
can be carried out during school education in collaboration with
domain and computer science experts. The domain education

expert provides the tuple (term, meaning), and the computer
science expert provides the model and tools for recording the
thus-learned concepts. The primitive concepts of DAL can be
manually recorded on an information support called the Domain
Ontology (OD). Concepts generated in the learning and usage
process are expressed in terms of already recorded (learned)
concepts and thus can be automatically represented in the
Domain Ontology during the learning and usage process.
Consequently, the DAL of a domain dynamically grows with the
education and usage process. Software tools, such as XML, RDF,
URI, SPARQL, WSDL, etc., currently used for advanced studies in
the Semantic Web, can be effectively used for this purpose during
the learning and usage process.

Consequently, in any field of expertise, during problem-solving,
the computer can be used as a brain tool through a natural
communication process between the computer and its user. Thus,
software complexity is removed from the computer usage
process, becoming an activity executed by computer science
experts. The learning process is no longer complicated by mixing
application domain concepts with computer science concepts.

3.2 Problem Solving Using the New Methodology

To solve a problem in the application domain D, we use a
methodology similar to the current one. But now, we assume that
domain D is computationally emancipated and its ontology is
OD(D). Additionally, domain D is provided with a virtual machine
whose instructions are terms denoting the concepts of domain D,
and the calculation represented by these instructions is specified
by the data model associated with the concept, stored in the

domain ontology D, and accessible on the Internet as a web
service. The virtual machine dedicated to domain D (DDVM) is
equipped with an abstract processor with a register called
Concept Counter (CC) and operates according to the following
program:

CC := Web Service (OD(D)};

While CC is not End

 {

 Execute Web Service indicated by CC;

 CC := Next(CC));

 }

Validate the resultC);	}	Validate	the	result;	

Next(CC) is a sofware tool that searches OD(D) for the next
concept stored in CC and executes the identified calculation
process. This algorithm is similar to the program executed by a
real computer, with the difference that:

• The program is an expression of the DAL language, i.e., a phrase
of the domain's natural language;

• The computer memory storing instructions and data is the
domain ontology OD(D), containing the user's knowledge.

If domain D is real computer programming, then DAL is a regular
programming language, and the domain phrase is the program

representing the problem solution in the real computer's memory.
Thus, for using the computer to solve domain D problems, the
user performs the following actions:

• Describe an algorithm that solves the problem. This algorithm is
a phrase of the domain's natural language;

• Make the CC register of the DDVM virtual machine contain the
address in OD(D) of the first concept of this phrase;

• The rest is automatically executed by DDVM(D).

Notice that programming has disappeared, naturally along with its
complications. We demonstrated this problem-solving model with
solving equations in the domain of Algebra [1, 8]. Among the new
software tools required by this computer usage methodology are:

• A software description language (Software Architecture
Description Language, SADL) [9]. SADL is a universal language
developed as an XML application whose primitive constructs are
tuples of the form

⟨DALterm⟩ Web-Service ⟨/DALterm⟩.

• A SADL interpreter that executes SADL algorithms (programs) on
a real computer;

• A translator that transforms DAL phrases into SADL algorithms;

The computer user develops problem-solving algorithms using
the domain's algorithmic language, invokes the DAL translator,
which translates DAL phrases into SADL algorithms, which are
then executed by the SADL interpreter on the Internet using

concrete computers that are available. Software tools involved in
this activity are developed and implemented by domain experts in
collaboration with computer science experts.

4. Future Research

The research reported here was initiated many years ago, with its
embryo in Chapters 6 and 7 of the book [10]. The evolution of
software over the past 10 years validates the "karma" of this
research: to support the evolution of the computer, we must
develop software that facilitates using the computer with the
user's natural language. Until now, software technology has been
dedicated to the computer's technology. This research shows how
to construct software dedicated to the computer user. All research
and development reported here can only be carried out through
collaboration between domain experts and computer science
experts. Therefore, research is required in two new directions:
• Educating domain experts on how to computationally
emancipate the domain of their expertise and record learned
concepts in the domain's ontology;
• Designing and implementing a general software support for
using the computer to solve problems by means of the user's
natural language.

References

[1] C. K. Bui. An evolu)onal domain oriented approach to problem
solving based on web service composi)on. PhD thesis, The university
of Iowa, Department of Computer Science, Iowa City, IA 52242, May
2013.

[2] P. Denning. The profession of IT. Communica)ons of the ACM,
58(9):34–36, 2015.

[3] P. Horn. Autonomic compuNng: IBM’s perspecNve on the state of the
informaNon technology.
hQp://www.research.ibm.com/autonomic/manifesto, 2001.

[4] J. Markoff. Killing the computer to save it. ACM TechNews,
October(31), 2012.

[5] G. Polya. How To Solve It. Princeton University Press, second ediNon
ediNon, 1957.

[6] T. Rus. Computer integraNon within problem solving process. In
Proceedings of RoEduNet 11-th Interna)onal Conference, Sinaia,
Rumania, 2013.

[7] T. Rus. Computer-Based Problem Solving Process. World ScienNfic,
2015.

[8] T. Rus and C. Bui. So_ware development for non-expert computer
users. In Proceedings of the Interna)onal Conference on Cloud
Compu)ng and Virtualiza)on, pages 200–207, Management
University, Singapore, 3-5 May 2010.

[9] T. Rus and D. CurNs. ApplicaNon driven so_ware development. In
Interna)onal Conference on SoGware Engineering Advances,
Proceedings, page 32, TahiN, 2006.

[10]. T.Rus. Mechansime Formale Pentru Specificarea Limbajelor, EdiNe
revizuita si adaogita. Presa Universitara Cljeana 2023.

