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1 Symmetric matrices

Definition 1.1 A symmetric matrix is a matrix A

such that A = AT .

In other words a symmetric matrix is a square matrix

A such that aij = aji.

Example 1.2 
1 2 3 4

2 −1 0 5

3 0 2 −7

4 5 −7 −2


is symmetric but


1 2 3 4

2 −1 0 −5

3 0 2 −7

4 5 −7 −2


is not.
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2 Diagonalization of Symmetric Matrices

We will see that any symmetric matrix is diagonalizable.

This is surprising enough, but we will also see that in fact

a symmetric matrix is similar to a diagonal matrix in a

very special way.

Recall that, by our definition, a matrix A is diagonal-

izable if and only if there is an invertible matrix P such

that A = PDP−1 where D is a diagonal matrix. We

make a stronger definition.

Definition 2.1 A matrix A is orthogonally diagonal-

izable if and only if there is an orthogonal matrix P

such that A = PDP−1 where D is a diagonal matrix.

Remark 2.2 Recall that any orthogonal matrix A is

invertible and also that A−1 = AT . Thus we can say

that A matrix A is orthogonally diagonalizable if there is

a square matrix P such that A = PDP T where D is a

diagonal matrix.

Remark 2.3 Recall (see page 115) the formula for trans-

pose of a product: (MN)T = NTMT . Using this we can
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see that any orthogonally diagonalizable A must be sym-

metric. This is because

AT = (PDP T )T = ((P T )TDTP T = PDP T = A.

Although we do not prove Proposition 2.1 the following

theorem used in the proof will help us find the matrix P .

in its own right:

Proposition 2.4 If A is symmetric then any two eigen-

values from different eigenspaces are orthogonal

For example if all of the eigenspaces are one dimen-

sional then the set of eigenvectors is an orthogonal set.
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Example 2.5 Suppose

A =

 3 2 0

2 2 2

0 2 1


We calculate the characteristic polynomial by expanding

the determinant along top row (or left column):

A =

∣∣∣∣∣∣
 3− λ 2 0

2 2− λ 2

0 2 1− λ

∣∣∣∣∣∣ =

= (3− λ) ((2− λ)(1− λ)− 4)− 2 (2(1− λ)) + 0 · 4
= (3− λ)(2− 3λ + λ2 − 4)− 2(2− 2λ)

= (3− λ)(λ2 − 3λ− 2)− 4 + 4λ

= 3λ2 − 9λ− 6− λ3 + 3λ2 + 2λ− 4 + 4λ

= −λ3 + 6λ2 − 3λ− 10
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The eigenvalues are the roots of

λ3 − 6λ2 + 3λ + 10 = 0

We could use the usual test for rational roots or just

stare at this and note that λ = −1 is a root.

We then do long division of polynomials and see that:

λ3 − 6λ2 + 3λ + 10

λ + 1
= λ2 − 7λ + 10 = (λ− 5)(λ− 2)

So we have three distinct eigenvectors and we know

the matrix is diagonalizable.

Next we find eigenvectors for these values. We recall

that these vectors are not unique but are all multiples of

each other.

To make a long story short here are three such vectors:
 2

2

1

 ,

 −2

1

2

 ,

 1

−2

2


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First we should at least verify this. We note that 3 2 0

2 2 2

0 2 1

 2

2

1

 =

 10

10

5


So the first vector is an eigenvector with eigenvalue 5.

Next  3 2 0

2 2 2

0 2 1

 −2

1

2

 =

 −4

2

4


So the first vector is an eigenvector with eigenvalue 2.

and finally 3 2 0

2 2 2

0 2 1

 1

−2

2

 =

 −1

2

−2


So the first vector is an eigenvector with eigenvalue -1.

At this point we should check our calculations by di-

rectly verifying that this is an orthogonal set of vectors.

But now to get our orthogonal matrix we need an or-

thonormal basis. It is clear that each of our vectors has

length 3.
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So construct our matrix

P =

 2
3 −

2
3

1
3

2
3

1
3 −2

3
1
3

2
3

2
3


How would we check that this matrix is orthogonal?

One way is to calculate P−1—make our augmented ma-

trix and row reduce, etc. However if we only want to

verify this and not do all that calculation we only need

to check that PP T = I , which is a lot easier. We would

expect that

PAP T =

 5 0 0

0 2 0

0 0 −1


. Why?

We leave it as an exercise to check this.

Example 2.6 In general, we have found that if the char-

acteristic polynomial has a root λ0 of order n > 2 or

more we do not know if we can find n linearly indepen-

dent eigenvalues for this eigenspace. But for symmetric

matrices, we always can. In fact we can sum all this up

in what the text calls the Spectral Theorem:
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Proposition 2.7 (The Spectral Theorem) An n × n
symmetric matrix has the following properties:

1. A has n real eigenvalues if we count multiplicity

2. For each eigenvalue the dimension of the corre-

sponding eigenspace is equal to the algebraic mul-

tiplicity of that eigenvalue.

3. The eigenspaces are mutually orthogonal

4. A is orthogonally diagonalizable

The next example will need our skills at the Gram

Schmidt process.

Consider A =

 0 2 2

2 0 2

2 2 0

.

The characteristic polynomial is (λ− 2)2(λ− 4)

There is one eigenvector with eigenvalue 4 and we can

verify that we could use

 1

1

1

.
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Even though the Spectral Theorem tells us we can di-

agonalize this matrix, to get the matrix P we will have

to find an orthogonal basis for the null space for λ = 2.

We are looking for an orthonormal basis for the null

space of

A− (−2)I =

 2 2 2

2 2 2

2 2 2


This matrix clearly row reduces to

 1 1 1

0 0 0

0 0 0

. We have

two free variables. If we let z = t and y = s then x+ s+

t = 0 and the null space consists of the vectors x

y

z

 =

 −s− ts

t

 = t

 −1

0

1

 + s

 −1

1

0


So 

 −1

1

0

 ,

 −1

0

1


is a basis for this eigenspace. Denote these vectors by

−→
b1

and
−→
b2 . However we need an orthonormal basis.
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We let −→v1 =
−→
b1 =

 −1

1

0

.

Next we need −→v2 =
−→
b2 −

−→
b2 · −→v1
−→v1 · −→v1

−→v1 .

Now

−→v1 ·
−→
b2 =

 −1

1

0

 ·
 −1

0

1

 = 1

Now

−→v1 · −→v1 =

 −1

1

0

 ·
 −1

1

0

 = 2

So

−→v2 =

 −1

0

1

− 1

2

 −1

1

0

 =

 −1
2

−1
2

1


For hand calculation we could make life easier by choos-

ing v2 =

 −1

−1

2

. Explain.

So it should be clear that our orthogonal matrix could
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be taken to be


1√
2
− 1√

6
1√
3

− 1√
2
− 1√

6
1√
3

0 2√
6

1√
3

 .
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