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1 Orthogonal Basis

Definition 1.1 A set of vectors is an orthogo-

nal set of vectors if every pair of (distinct) vectors

is orthogonal.

Example 1.2 We can quickly check that
 1

0

1

 ,

 0

1

0

 ,

 1

0

−1


is an orthogonal set

Proposition 1.3 A set of n orthogonal non-zero vec-

tors gives a basis for Rn.

Definition 1.4 An orthogonal basis for a sub-

space W is a set of orthogonal vectors of W which

is also a basis for W .

If we have any basis {−→u1, . . . ,
−→up} for a subspace W ,

and if −→y ∈ W we can write

−→y = c1
−→u1 + · · · + cp

−→up.
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For an orthogonal basis there is a nice way of calculating

the ci:

Proposition 1.5 If {−→u1, . . . ,
−→up} is an orthogonal ba-

sis for subspace W in Rn then any −→y ∈ W can be

written as the following linear combination:

−→y =

(−→y · −→u1
−→u1 · −→u1

)
−→u1 + · · · +

(−→y · −→up
−→up · −→up

)
−→up

.

In other words, ci =

(−→y · −→ui
−→ui · −→ui

)

Example 1.6 Suppose W = R3 and we use the basis

of Example 1.2.

Consider y =

 1

2

3

. We want to express y as a linear

combination of these basis vectors. We can do this in a

straight forward way as we did in our Chapter 1 (do you

recall how?).

Or we can use the fact that this basis is orthogonal
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and quickly calculate: 1

2

3

 ·
 1

0

1

 = 4 and

 1

0

1

 ·
 1

0

1

 = 2

 1

2

3

 ·
 0

1

0

 = 2 and

 0

1

0

 ·
 0

1

0

 = 1

 1

2

3

 ·
 1

0

−1

 = −2 and

 1

0

−1

 ·
 1

0

−1

 = 2

So we see that 1

2

3

 =
4

2

 1

0

1

 +
2

1

 0

1

0

 +
−2

2

 1

0

−1

 .

We can quickly verify that this last equation is correct.

2 Orthogonal Projection

The formula ci =

(−→y · −→ui
−→ui · −→ui

)
involves just two vectors

and is the basis for the following definition:
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Definition 2.1 Let −→y and −→u be any two vectors in

Rn with −→u 6= −→0 . The projection of −→y onto −→u is

proj−→u
−→y =

(−→y · −→u
−→u · −→u

)
−→u

Remark 2.2 Two important things: the projection of

projection of −→y onto −→u is a multiple of −→u .

Also there is generally a big difference between projec-

tion of −→y onto −→u and projection of −→y onto −→u .

For example if −→y =

 1

2

3

 and −→u =

 1

1

1



proj−→u
−→y =

(−→y · −→u
−→u · −→u

)
−→u =

6

3

 1

1

1

 =

 2

2

2


while

proj−→y
−→u =

(−→u · −→y
−→y · −→y

)
−→y =

6

14

 1

2

3

 =

 3
7
6
7
9
7
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Remark 2.3 Our text actually has two definitions. Again

given −→y and −→u be any two vectors in Rn with −→u 6= −→0 .

The vector −→u spans a subspace L which is a line in Rn.

They then define projection onto this subspace L rather

than the vector −→u :

proj−→u
−→
L =

(−→y · −→u
−→u · −→u

)
−→u .

This is actually a good way to do this. The distinction

is minor. However, most math, science and engineering

texts use the notation and Definition 2.1, so we will do

so also in the class in addition to the “subspace” version.

3 Orthonormal Sets

Definition 3.1 An orthonormal set is a set of or-

thogonal unit vectors. If a basis of a subspace W is

orthonormal it is call an orthonormal basis for

W .

Remark 3.2 A key word here is “unit”.

Also, “orthogonal” and “orthonormal” are very similar

words. Be careful not to confuse them.
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Example 3.3

Consider

−→u1 =


1√
3

1√
3

1√
3

 , −→u2 =


2√
6
−1√

6
−1√

6

 , −→u3 =

 0
1√
2
−1√

2

 .

We can check that this is an orthonormal basis for R3

by verifying that:

−→u1 · −→u1 = 1, −→u2 · −→u2 = 1, −→u3 · −→u3 = 1

and

−→u1 · −→u2 = 0, −→u1 · −→u3 = 0, −→u2 · −→u3 = 0.

Proposition 3.4 An m×n matrix U has orthogonal

columns if and only if UTU = I.

Proposition 3.5 If m × n matrix U has orthogonal

columns and −→x ,−→y ∈ Rn then
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1. ||U−→x || = ||−→x ||

2. U−→x · U−→y = −→x · −→y

3. U−→x · U−→y = 0if an only if−→x · −→y = 0

Remark 3.6 In Proposition 3.5, the key part is part 2,

since the other two parts follow from this.

It is important to think of the linear transformation

corresponding to U . Proposition 3.5 part 1 says this lin-

ear transformation preserves length.

Proposition 3.5 part 3 says this linear transformation

preserves right angles. In fact from Proposition 3.5 part

2 we see that all angles are preserved.

In terms of physics and engineering, we say that this

transformation is a “rigid motion”.

Definition 3.7 An n × n invertible matrix U is an

orthogonal matrix if U−1 = UT .

Remark 3.8 If U is is a square n×n matrix then then

U is an orthogonal matrix if and only if the column vec-

tors of U is an orthonormal basis for Rn. (Also the row

vectors will be an orthonormal basis for Rn)
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Remark 3.9 If U is a square orthogonal n× n matrix

det(U) = ±1.

This follows since

det(U) =
1

det(U−1)
=

1

det(UT )
=

1

det(U)
.

So we see that (det(U))2 = 1 and so det(U) = ±1.

Also note that the converse is not true since

∣∣∣∣( 1
2 0

0 2

)∣∣∣∣ =

1 and this matrix is clearly not orthogonal.

Remark 3.10 The product of orthogonal matrices is

orthogonal. If A and B are n × n orthogonal matrices,

then

(AB)−1 = B−1A−1 = BTAT = (AB)T .

In terms of corresponding linear transformations, this

says that a composition of rigid motions is a rigid motion,

as we should expect.
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