
22m:033 Notes:
5.3 Diagonalization

Dennis Roseman
University of Iowa

Iowa City, IA

http://www.math.uiowa.edu/∼roseman

April 19, 2010

1



1 Diagonalizable matrices

Remark 1.1 The motivation for considering all that

follows in this section is found in Section 5.4, where the

geometric meaning of “similar” is made clear.

Definition 1.2 A square matrix is diagonalizable

if it is similar to a diagonal matrix

Remark 1.3 In other words, A is diagonalizable if there

is an invertible matrix P such that A = PDP−1 where

D is a diagonal matrix.

Another way of putting this is: an invertible matrix

Q such that D = QAQ−1 where D is a diagonal matrix

since if we let Q = P−1 then

QAQ−1 = P−1AP = P−1(PDP−1)P =

(P−1P )D(P−1P ) = IDI = D.

So how can one find diagonalizable matrices? One way

is by the following theorem.
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Proposition 1.4 If A is an n× n matrix A is diag-

onalizable if and only if A has n linearly independent

eigenvectors.

In fact, A = PDP−1 where D is a diagonal matrix

if and only if the column vectors of P are n linearly

independent eigenvectors of A.

The next result give us a better handle on how to use

Proposition 1.4.

Proposition 1.5 If A is an n×n matrix A with dis-

tinct eigenvalues λ1, . . . , λp.

1. For 1 ≤ k ≤ p the dimension of the eigenspace

for λk is less then or equal to the algebraic multi-

plicity of the eigenvalue λk as a zero of the char-

acteristic polynomial of A.

2. A is diagonalizable if and only if the sum of the

dimensions of the distinct eigenspaces equals n

and this happens if and only if, for each k the

dimension of the eigenspace corresponding to λk
is exactly equal to the algebraic multiplicity of the

eigenvalue λk.
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3. If A is diagonalizable and Bk is a basis for the

eigenspace corresponding to λk, then the total col-

lection of the vectors B1, . . . ,Bp forms an eigen-

vector basis for Rn.

2 Some examples on mutiplicity

Example 2.1 Consider the polynomial

λ7+5λ6−6λ5−50λ4+5λ3+153λ2−108 = (λ−1)(λ+1)(λ−2)2(λ+3)3.

In this polynomial, +1 and -1 have multiplicity 1, 2

has multiplicity 2 and -3 has multiplicity 3.

If this were the characteristic polynomial for some 7×
7 matrix, we could conclude there is an eigenspace of

dimension one for eigenvalues 1 and -1. But for eigenvalue

2, this dimension could be 1 or 2; for eigenvalue -3 it could

be 1, 2 or 3.

The following two examples show that multiplicity does

not give a clue to the dimensions of the eigenspace.
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Example 2.2 If A =

(
1 0

0 1

)
then the characteristic

polynomial is (1−λ)2. Since this is the identity matrix it

is clear that the eigenspace for λ = 1 is two dimensional.

For a basis of eigenvectors, we can take

{e1, e2} = {
(

1

0

)
,

(
0

1

)
}.

Also any basis for R2 will be a basis for this eigenspace.

In summary, in this example we have an eigenvalue

of multiplicity 2 whose corresponding eigenspace has di-

mension 2.

Contrast the above with this next example which is a

simple shear.

Example 2.3 If A =

(
1 1

0 1

)
then the characteristic

polynomial is (1− λ)2.

The eigenspace for this value is the null space of

(
1− 1 1

0 1− 1

)
=

(
0 1

0 0

)
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For a basis of eigenvectors, we can take

{e1} = {
(

1

0

)
}.

In summary, in this example we have an eigenvalue

of multiplicity 2 whose corresponding eigenspace has di-

mension 1.

3 Algorithm for diagonalizing matrices

Given a square matrix A here is how to investigate diag-

onalizability of A using Proposition 1.4 and Proposition

1.5.

1. Find the eigenvalues of A.

(a) If there are none, A is not diagonalizable and we

can stop.

(b) If there are n distinct eigenvalues, then A is di-

agonalizable. If we are further expected to find

P we continue.

(c) If there are some eigenvalues, but less than n, we

do not yet know whether or not A is diagonaliz-

able and we must continue.
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2. For each eigenvalue determine a basis for the eigenspace.

Note: if we are in case 1b, we know each eigenspace

is one-dimensional.

3. If the total number of basis vectors found in step 2

is less than n, then A is not diagonalizable and we

can stop.

4. At this point we have determined if A is diagonaliz-

able or not.

If it is diagonalizable, we might want to know two ad-

ditional things: a matrix D and a matrix P . Except

for a few special cases, neither of these is uniquely

determined by A. In the case that we have less eigen-

values than n, there will be infinitely many possible

candidates for P . (If you know P you can simply

calculate a corresponding D using D = PAP−1).

(a) If we only want to have a diagonal matrix D

which is similar to A, we can let D be a diagonal

matrix whose non-zero entries are the eigenvalues

for A. The number of times an eigenvalue will

repeat is exactly equal to the dimension of the

corresponding eigenspace.

(b) If we need to find a matrix P we construct one

whose columns are all the basis vectors found in
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step 2.

4 Examples to illustrate algorithm

1. (a) The matrix

(
0 −1

1 0

)
has characteristic polyno-

mial λ2 + 1. This has no (real) eigenvalues and

thus is not diagonalizable. Note: geometrically

this is clear since this is a rotation of π
2 .

(b) The matrix

(
2 3

0 5

)
has characteristic polyno-

mial (2 − λ)(5 − λ). Here n = 2 and we have

two distinct eigenvalues, this matrix is diagonal-

izable.

(c) The matrix

(
1 1

0 1

)
has characteristic polyno-

mial (1− λ)2 and so has only one eigenvalue, so

we can make no conclusion so far (were it not for

the fact we have already analyzed this as Exam-

ple 2.3).

2. To do this step we find, for each eigenvalue λk a basis

for the null space of A− λkI .
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3. Suppose our matrix is

 1 1 1

0 1 1

0 0 1

. Note: this is a

higher dimensional version of Example 2.3. Clearly

the characteristic polynomial is (1−λ)3 and we have

only one eigenvalue, 1. The eigenspace correspond-

ing to this value is the null space of

 0 1 1

0 0 1

0 0 0

. If

 x

y

z

 is in this null space we see that we must have

z = 0, y = z = 0, and x is a free variable. So this

null space is one dimensional with basis

 1

0

0

. We

conclude this matrix is not diagonalizable.

4. (a) If somehow you knew that you had a 5 × 5 ma-

trix A which was diagonalizable with one eigen-

value of 2 with multiplicity 3 and one eigenvalue

with eigenvalue -5 with multiplicity 2, then you

could immediately conclude that A is similar to
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
3 0 0 0 0

0 3 0 0 0

0 0 −5 0 0

0 0 0 −5 0

0 0 0 0 −5

. We could also conclude

that A is similar to
3 0 0 0 0

0 −5 0 0 0

0 0 −5 0 0

0 0 0 −5 0

0 0 0 0 3

 ,


−5 0 0 0 0

0 3 0 0 0

0 0 −5 0 0

0 0 0 3 0

0 0 0 0 −5

 , etc

(b) If we somehow knew we had a matrix A with two

eigenvalues, say 3 and -5 and that a basis for the

eigenspace for eigenvalue 3 is

{


1

0

1

0

1

 ,


0

1

1

2

0

}
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and a basis for the eigenspace for eigenvalue -5 is

{


1

2

2

1

1

 ,


0

0

1

0

2

 ,


1

0

2

1

0

}
Then we could use these vectors as columns and

define P =


1 0 1 0 1

0 1 2 0 0

1 1 2 1 2

0 2 1 0 1

1 0 1 2 0

. We would then

know that PAP−1 =


3 0 0 0 0

0 3 0 0 0

0 0 −5 0 0

0 0 0 −5 0

0 0 0 0 −5

with-

out having to calculate P−1, which by the way

is 
11
7 −2

7 −
8
7

5
7

4
7

2
7 −1

7 −
4
7

6
7

2
7

−1
7

4
7

2
7 −3

7 −
1
7

−5
7 −

1
7

3
7 −1

7
2
7

−3
7 −

2
7

6
7 −2

7 −
3
7

 .
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5 Diagonalization and high powers of matri-

ces

It is easy to calculate high powers of a diagonal matrix:


2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 5




2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 5

 =


4 0 0 0

0 9 0 0

0 0 16 0

0 0 0 25




2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 5




2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 5




2 0 0 0

0 3 0 0

0 0 4 0

0 0 0 5

 =


8 0 0 0

0 27 0 0

0 0 64 0

0 0 0 125


Suppose A is diagonalizable, so that A = PDP−1.

If we actually know the matrix P we can use it to
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calculate high powers of A as follows:

A2 = (PDP−1)(PDP−1)

= (PD)(P−1P )(DP−1)

= (PD)I(DP−1)

= P (DID)P−1

= PD2P−1

It is clear that similarly

A3 = (PDP−1)(PDP−1)(PDP−1)

= PD3P−1

and in general for any n,

An = PDnP−1

Here is Exercise 3 in this section:

Example 5.1 Given that

A =

(
a 0

3(b− a) b

)
=

(
1 0

3 1

)(
a 0

0 b

)(
1 0

−3 1

)
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We can conclude that since Dk =

(
ak 0

0 bk

)
,

Ak =

(
1 0

3 1

)(
ak 0

0 bk

)(
1 0

−3 1

)
=

(
ak 0

3ak − 3bk bk

)
.

6 A large example

Example 6.1 Lets try and diagonalize

A =



1 0 1 0 1 0 1

0 −1 0 2 0 2 0

0 0 2 0 1 0 1

0 0 0 2 0 0 0

0 0 0 0 −3 0 0

0 0 0 0 0 −3 0

0 0 0 0 0 0 −3


.

Since this is triangular, we quickly calculate that the char-

acteristic polynomial of A is

(λ− 1)(λ + 1)(λ− 2)2(λ + 3)3.

By the way this is the polynomial considered in Ex-

ample 2.1.
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The eigenspace with eigenvalue 1 must be one-dimensional

and we can easily find that e1 is an eigenvector. Also, the

eigenspace with eigenvalue -1 must be one-dimensional

and we can easily find that e2 is an eigenvector.

For the eigenspace for eigenvalue 2, we look at the null

space of:

1− 2 0 1 0 1 0 1

0 −1− 2 0 2 0 2 0

0 0 2− 2 0 1 0 1

0 0 0 2− 2 0 0 0

0 0 0 0 −3− 2 0 0

0 0 0 0 0 −3− 2 0

0 0 0 0 0 0 −3− 2


=



−1 0 1 0 1 0 1

0 −3 0 2 0 2 0

0 0 0 0 1 0 1

0 0 0 0 0 0 0

0 0 0 0 −5 0 0

0 0 0 0 0 −5 0

0 0 0 0 0 0 −5


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We row reduce this and get

1 0 −1 0 0 0 0

0 1 0 −2
3 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.

Letting x4 = t and x3 = s we see the null space is

s
2
3t

s

t

0

0

0


= s



1

0

1

0

0

0

0


+ t



0
2
3

0

1

0

0

0


We can multiply the second vector by 3 and see that a

basis for this eigenspace is given by:
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



0

2

0

3

0

0

0


,



1

0

1

0

0

0

0




.

Next for the eigenvalue -3, we look at the null space of

1 + 3 0 1 0 1 0 1

0 −1 + 3 0 2 0 2 0

0 0 2 + 3 0 1 0 1

0 0 0 2 + 3 0 0 0

0 0 0 0 −3 + 3 0 0

0 0 0 0 0 −3 + 3 0

0 0 0 0 0 0 −3 + 3


=



4 0 1 0 1 0 1

0 2 0 2 0 2 0

0 0 5 0 1 0 1

0 0 0 5 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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This row reduces to

1 0 0 0 1
5 0 1

5

0 1 0 0 0 1 0

0 0 1 0 1
5 0 1

5

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


So we know from the fourth row that x4 = 0. For the

third row, if we let x7 = s and x5 = t, we see that

x3 = −s
5 −

t
5. For the second row if we let x6 = r then

x2 = −r. Finally from the top row we get: x1 = −s
5−

t
5.

So the null space is

x1
x2
x3
x4
x5
x6
x7


=



−s
5 −

t
5

−r
−s

5 −
t
5

0

t

r

s


= s



−1
5

0

−1
5

0

0

0

1


+r



0

−1

0

0

0

1

0


+t



−1
5

0

−1
5

0

1

0

0


Clearing the fractions, we see that a basis for the eigenspace

with eigenvalue -3 is:
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



−1

0

−1

0

0

0

5


,



0

−1

0

0

0

1

0


,



−1

0

−1

0

5

0

0




.

We next assemble our matrix P using these eigenvectors

as columns and get

P =



1 0 0 1 −1 0 −1

0 1 2 0 0 −1 0

0 0 0 1 −1 0 −1

0 0 3 0 0 0 0

0 0 0 0 0 0 5

0 0 0 0 0 1 0

0 0 0 0 5 0 0


.

As a check, we can calculate the inverse P−1 (details
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omitted—do you recall how to do this?):

1 0 −1 0 0 0 0

0 1 0 −2
3 0 1 0

0 0 0 1
3 0 0 0

0 0 1 0 1
5 0 1

5

0 0 0 0 0 0 1
5

0 0 0 0 0 1 0

0 0 0 0 1
5 0 0


,

and then check that:

1 0 1 0 1 0 1

0 −1 0 2 0 2 0

0 0 2 0 1 0 1

0 0 0 2 0 0 0

0 0 0 0 −3 0 0

0 0 0 0 0 −3 0

0 0 0 0 0 0 −3


=



1 0 0 1 −1 0 −1
0 1 2 0 0 −1 0
0 0 0 1 −1 0 −1
0 0 3 0 0 0 0
0 0 0 0 0 0 5
0 0 0 0 0 1 0
0 0 0 0 5 0 0





1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 −3 0 0
0 0 0 0 0 −3 0
0 0 0 0 0 0 −3





1 0 −1 0 0 0 0
0 1 0 −2

3
0 1 0

0 0 0 1
3

0 0 0
0 0 1 0 1

5
0 1

5

0 0 0 0 0 0 1
5

0 0 0 0 0 1 0
0 0 0 0 1

5
0 0


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