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1 Understanding linear transformations

Example 1.1 Let A =

 2 0 0

0 −1 0

0 0 1
3

 and consider the

associated linear transformation TA(−→x ) = A−→x . Then

TA is a map from 3-dimensional space to itself.

TA

 x

y

z

 =

 2x

−y
z
3

 .

We can describe this geometrically as follows.

What TA does is

• stretch by a factor of 2 in the x-coordinate

• reverse sign in the y-coordinate

• shrink by using factor of 1
3 in the z-coordinate
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Here is an even even simpler example

Example 1.2 Let B =

 1 0 0

0 2 0

0 0 3

 and consider the

associated linear transformation TB(−→x ) = B−→x . Then

TB is a map from 3-dimensional space to itself.

TB

 x

y

z

 =

 x

2y

3z

 .

We can describe this geometrically as follows.

What TB does is

• makes no change in the x-coordinate

• stretch by a factor of 2 in the y-coordinate

• stretch by a factor of 3 in the z-coordinate
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Example 1.3 Let C =

 4 0 1

−2 1 0

−2 0 1

 and consider the

associated linear transformation TC(−→x ) = A−→x .

There does not appear to be any simple way to describe

what TC does. It certainly seems very different from the

transformation TB of Example 1.2.

What we will see in this section is a way of discov-

ering and articulating “transformations TA and TB are

fundamentally very similar in some sense”.

2 Definitions

Definition 2.1 If A is a square matrix, a non-zero

vector −→x such that A−→x = λ−→x for some number λ

is called an eigenvector of A. If such a λ exists

it is called an eigenvalue and we say that −→x is an

eigenvector corresponding to eigenvalue λ.
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Recall the standard basis of R3 is:

−→e1 =

 1

0

0

 ,−→e2 =

 0

1

0

 , and −→e3 =

 0

0

1


Remark 2.2 A linear transformation is determined by

what it does on for a basis. The first few examples we

look at can be easily understood using the standard basis.

When we get to more complicated looking examples we

will see the need for using other bases. That is, by using a

“complicated” basis, an apparently “complicated” linear

transformation becomes “simpler”.

it is easy to calculate and in very simple examples will

tell us enough that we can understand the transforma-

tion.
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Example 2.3 So in Example 1.1 we note that

• TA(−→e1 ) = 2−→e1
• TA(−→e2 ) = −−→e2
• TA(−→e3 ) = 1

3
−→e3

Using our definitions we can say:

• e1 is an eigenvector for A with eigenvalue 2

• e2 is an eigenvector for A with eigenvalue -1

• e3 is an eigenvector for A with eigenvalue 1
3

6



Example 2.4 In Example 1.2 we note that

• TB(−→e1 ) = 1−→e1
• TB(−→e2 ) = 2−→e2
• TB(−→e3 ) = 3−→e3

Using our definitions we can say:

• e1 is an eigenvector for A with eigenvalue 1

• e2 is an eigenvector for A with eigenvalue 2

• e3 is an eigenvector for A with eigenvalue 3
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It is important to note that a matrix might have no

eigenvectors at all.

Example 2.5 Let

(
0 −1

1 0

)
. This has no eigenvectors

at all. We could show this algebraically, but it is simpler

to note that this corresponds to rotation in the plane

counterclockwise by π
2 .
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Example 2.6 Let D =

 1 0 0

0 1 0

0 0 0

.

TD

 x

y

z

 =

 x

y

0

 .

• TD(−→e1 ) = −→e1
• TD(−→e2 ) = −→e2
• TD(−→e3 ) =

−→
0

From this we note that

• e1 is an eigenvector for A with eigenvalue 1

• e2 is an eigenvector for A with eigenvalue 1

• e3 is an eigenvector for A with eigenvalue 0

One important thing we notice is that 0 is a possi-

ble eigenvalue (BUT, by definition,
−→
0 is not a possible

eigenvector).
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We also note that any vector of the form

 a

b

0

 will

be an eigenvector with eigenvalue 1—for example all of

these: 1

1

0

 ,

 1

−2

0

 ,

 1066

−π2
0

 ,

 55

−6666

0

 , · · ·
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Example 2.7 Let E =

 0 1 0

1 0 0

0 0 −1

 .

TE

 x

y

z

 =

 y

x

−z

 .

• TE(−→e1 ) = −→e2
• TE(−→e2 ) = −→e1
• TE(−→e3 ) = −−→e3

From this we note that

• e1 is an not eigenvector for A

• e2 is an not eigenvector for A

• e3 is an eigenvector for A with eigenvalue -1

One important thing we notice is that an eigenvalue

can be negative.

Also we can find eigenvectors, they just are not the

standard basis vectors.
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For example we can check that

 1

1

0

 is an eigenvector

with eigenvalue 1 and that 1

−1

0

 is an eigenvector with eigenvalue - 1.
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Here is another example:

Example 2.8 In Example 1.3 we claimed that Let C = 4 0 1

−2 1 0

−2 0 1

 andB =

 1 0 0

0 2 0

0 0 3

 of Example 1.2 were

similar in some fundamental way.

We note that C has the same eigenvalues as B, namely

1, 2, 3. In fact the C has three eigenvectors: 0

1

0

 ,

 −1

2

2

 , and

 −1

1

1


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3 Strategy for finding eigenvectors and eigen-

values

It might seem that in order to find eigenvectors and eigen-

values, we first should find eigenvectors and when we do

it will be clear what the eigenvalues are.

So if (somehow) someone told us that −→v =

 −1

1

0


is an eigenvector for A =

 1 3 3

−3 −5 −3

3 3 1

 we could

easily figure out the what the corresponding eigenvalue

must be:

 1 3 3

−3 −5 −3

3 3 1

 −1

1

0

 =

 2

−2

0


So this eigenvalue is -2.
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4 Finding eigenvectors if you know the eigenvalue—

the eigenspace

However, it is generally easier to find eigenvalues first and

then eigenvectors.

We will first show how to find eigenvectors IF we know

eigenvalues. Then in the next section we will learn how

to find eigenvalues.

Remark 4.1 If A has one eigenvector with eigenvalue

λ how many does it have?

The answer is “infinitely many”. In fact if A is n× n
let Eλ denote all vectors in Rn which are eigenvectors for

A with eigenvalue λ.

We can see that −→u ∈ Eλ and c is any non zero number

then c−→u ∈ Eλ since

A(c−→u ) = c(A−→u ) = c(λ−→u ) = λ(c−→u )

We look at a numerical example. If A =

(
1 6

5 2

)
and
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−→u =

(
6

−5

)
Then(

1 6

5 2

)(
6

−5

)
=

(
−24

20

)
= −4

(
6

−5

)
So we see −→u is an eigenvector with eigenvalue -4. If we

let c = 2 we calculate: Then(
1 6

5 2

)(
12

−10

)
=

(
−48

40

)
= −4

(
12

−10

)

Similarly we note that if−→u ,−→v ∈ Eλ and−→u +−→v 6= −→0
then −→u +−→v ∈ Eλ.

So Eλ is “almost” a subspace of Rn. The only “prob-

lem” is that 0 /∈ Eλ.
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Since it is most convenient to frame subsets as sub-

spaces, we use an indirect definition.

We first note that for an eigenvector −→x we have:

A−→x = λ−→x
or equivalently

A−→x − λ−→x =
−→
0 .

If we let I = In Now

−→x = I−→x

and so

λ−→x = λI−→x .
Putting this all together we get:

A−→x − λI−→x =
−→
0

which we finally can rewrite as:

(A− λI)−→x =
−→
0
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Definition 4.2 If λ is an eigenvalue for square ma-

trix A, the null space of A−λI is the eigenspace of

A corresponding to λ.

One of the best ways to describe a subspace is to give

a basis for that subspace. So in many of our problems we

will be asked to find a basis for the eigenspace. Sometimes

we just want to know the dimension of an eigenspace.

Example 4.3 Recall Example 2.6 D =

 1 0 0

0 1 0

0 0 0

.

What we found out was that the matrix has two eigen-

values and that

• The eigenspace corresponding to eigenvalue 1 has ba-

sis {−→e1 ,−→e2}

• The eigenspace corresponding to eigenvalue 0 has ba-

sis {−→e3}.

Example 4.4 Here is problem 15. GivenA =

 4 2 3

−1 1 −3

2 4 9


find an eigenspace for λ = 3
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Then

A− 3I =

 1 2 3

−1 −2 −3

2 4 6


which clearly row reduces to

A− 3I =

 1 2 3

0 0 0

0 0 0

 .

If we write −→x =

 x

y

z

 and write free variables as pa-

rameters: z = t, y = s, then x = −2s − 3t. So the null

space consists of all vectors of the form:

 x

y

z

 =

 −2s− 3t

s

t

 = s

 −2

1

0

 + t

 −3

0

1


So a basis for this eigenspace is:

{

 −2

1

0

 ,

 −3

0

1

}.
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