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1 Subspaces

Up to this point we have been speaking of solutions sets of

equation sets. The first observation is that these sets have

additional algebraic properties. Sets with these proper-

ties will be called subspaces.

Definition 1.1 A subset H ⊆ Rn is a subspace of

Rn if

1.
−→
0 ∈ H

2. If −→u ∈ H and −→v ∈ H then −→u +−→v ∈ H

3. If If −→u ∈ H and c ∈ R then c−→u ∈ H

Remark 1.2 The set consisting of the single zero vector

of Rn a subspace of Rn. This is called the zero sub-

space.

Remark 1.3 On the other extreme, the set consisting

of all vectors of Rn a subspace of Rn. In other words

“Rn is a subspace of itself”.
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Remark 1.4 If a subspace is not the zero subspace, it

contains at least one non-zero vector −→v and also all the

vectors c−→v where c ∈ R.

Thus any non-zero subspace is an infinite subset of Rn.

So any non empty finite set of non-zero vectors is not

a subspace.

Remark 1.5 There are many infinite sets of vectors

that are not subspaces. For example all vectors in the

plane

(
x

y

)
with x2 + y2 = 1 ( the unit circle) satisfies

none of the conditions of definition of subspace (Defini-

tion 1.1).

Remark 1.6 Suppose S is all vectors in the plane

(
x

y

)
with 0 ≤ xy. In other words, x and y have the same

sign—so these are the vectors in the first and third quad-

rants. This set satisfies the first and the third condition

of Definition 1.1, but not the second.

Here is an example of two vectors in S whose sum is

3



not in S: (
1
1
2

)
+

(
−1

2

−1

)
=

(
1
2

−1
2

)
in R2.

Remark 1.7 If S is any set of vectors in Rn, the set H

of all linear combinations of vectors in S is a subspace of

Rn.

For example consider the plane H containing the vec-

tors

 1

2

3

 and

 4

5

6

. H is a subspace since we can

describe it as “all linear combinations of the two given

vectors.

In fact all subspaces H can be described as “all linear

combinations of some set of vectors”.

Definition 1.8 The column space of a matrix

A is the set of all linear combinations of the column

vectors of A.

Definition 1.9 The null space of a matrix A is

the set of all solutions of the homogeneous equation

A−→x =
−→
0 and is denoted by Nul(A).
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Proposition 1.10 The null space of an m×n matrix

A is a subspaces of Rn.

Remark 1.11 The column space and null space of a

matrix are very different things. For example if

A =

(
1 2 3

4 5 6

)
the null space of A is a set of three-dimensional vec-

tors and the column space is a set of two-dimensional

vectors.

Having said that we will soon see there is a relationship

of some sort involving these two ideas,

2 Basis

In Remark 1.7 we noted that any subspace is all linear

combinations of some set S of vectors. However this set

might be large. The concept of basis captures the idea of

“the smallest set of vectors we need to do this”.

Definition 2.1 A basis for a subspace H ⊆ Rn

is a linearly independent set in H that spans H

5



Example 2.2 Let B consist of the two vectors

e1 =

(
1

0

)
and e2 =

(
0

1

)
.

This is a basis for R2 since we can write:

(
x

y

)
= x

(
1

0

)
+ y

(
0

1

)
.

This is called the standard basis for R2.

Example 2.3 Let B consist of the two vectors

b1 =

(
1

0

)
and b2 =

(
1

1

)
.

This is a basis for R2 they are clearly linearly indepen-

dent and since we can write:

(
x

y

)
= (x− y)

(
1

0

)
+ y

(
1

1

)
.

This is a basis for R2.

So how did we discover the above formula? We were

looking for numbers, say a and b so that we can write:
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(
x

y

)
= a

(
1

0

)
+ b

(
1

1

)
.

This gives rise to a set of non-homogeneous equations

with augmented matrix:(
1 1 x

0 1 y

)
.

This row reduces quickly to:(
1 0 x− y

0 1 y

)
.

Thus a solution is a = x− y and b = y

Definition 2.4 Let −→ei denote the i-the column vector

of the identity matrix In. The collection of vectors

{−→e1 ,−→e2 , . . . ,−→en} is called the standard basis for Rn.

3 How to find a basis for the null space of A

The methods we have used for expressing solutions in

parametric vector form of the homogeneous equations

A−→x =
−→
0 gives a basis.
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Example 3.1 We will find a basis for the null space of

A =

(
1 −2 3 −4

0 0 1 1

)
.

This is actually the coefficient matrix corresponding the

the equations

x− 2y + 3z − 4w = 0

z + w = 0

which were considered as an example in the class notes

for Chapter 1 Section 5.

When we solved this system, we expressed the solution

set in vector parametric form as
x

y

z

w

 = t


7

0

−1

1

 + s


2

1

0

0

 .

.

Let B consist of the pair of vectors


7

0

−1

1

 and


2

1

0

0

.

In terms we have learned since that section, we showed
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that the vectors in B span the solution space of A−→x =−→
0 . Observe that these two vectors are linearly indepen-

dent. Therefore B is a basis for the null space of A.

In general we can show that this process we have been

using, based on row reduction of matrices will always

result in a set of linearly independent vectors and thus

give a basis for the null space.

4 How to find a basis for the column space

of A

Warning: The method for doing this is easy but subtle

so you must pay close attention to the details. This is

one of the few times we make use of the echelon form of

A rather than the reduced echelon form—that is why the

book considers this “easy”.

Here is the procedure for finding a basis for the column

space of A:

1. Find an echelon form E of A.

2. For each row of E unless it is an all zero row will

contain a first non-zero entry. Just pay attention to

9



which column this entry is in. The corresponding

column of A will be one of our basis vectors.

3. Do this procedure for each row and we will end up

with a basis of the column space.

Example 4.1 Using the same A from the previous prob-

lem we note that it is already in reduced form. In the first

row the leading non-zero entry is in the first column. In

the second row, the leading non-zero entry is in the third

column.

So a basis for the column space will consist of the two

vectors

(
1

0

)
and

(
3

1

)

Example 4.2 We find a basis for the column space of

A =

 2 3 4 5 6

2 3 7 8 9

2 3 4 3 4

 .

Subtracting the first row from the second and then the

third gives us a echelon form:

E =

 2 3 4 5 6

0 0 3 3 3

0 0 0 −2 −2

 .
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. The leading non-zero entries of E are found in the first,

third and fourth columns. So we let our basis B be the

first, third and fourth columns of A. This will give us a

basis for the column space of A.

In other words this basis

B = {

 2

2

2

 ,

 4

7

4

 ,

 5

8

3

}
Warning: it is important that we use this to chose

columns from A and not from E.
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