22m:033 Notes:
 2.2 Inverse of a Matrix
 Dennis Roseman
 University of Iowa
 Iowa City, IA
 http://www.math.uiowa.edu/~roseman

March 3, 2010

1 Definition of Inverse

Definition 1.1 An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix C such that

$$
A C=I_{n} \text { and } C A=I_{n}
$$

If C exists it is called the inverse of A and denoted by A^{-1}.

Remark 1.2 If an inverse exists, it is unique.
With our notation we can express the equations in Definition 1.1 as:

$$
A A^{-1}=I_{n} \text { and } A^{-1} A=I_{n}
$$

A matrix that is not invertible is called a singular matrix.

A matrix that is invertible is called a nonsingular matrix.

Example 1.3 We can check that the inverse of $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ is $\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$
by multiplying the two matrices.
For a 2×2 matrix we can easily explain invertibility (Theorem 4 of text):

Proposition 1.4 If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then A is invertible if and only if $a d-b c \neq 0$. In fact if $a d-b c \neq 0$

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

The number $a d-b c$ is called the determinant of A.

Note that we could have calculated the inverse in Example 1.3 using these formulas. Note that the determinant of $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ is -2 .

Remark 1.5 WARNING: The simple formula for the inverse of a 2×2 matrix only works for a 2×2 matrix. We will find an extension of this formula later in the course but it is not simple. In fact find better ways of calculating inverses in this section.

2 Using inverse to solve equations

This is Theorem 5 in text:

Proposition 2.1 If A is an $n \times n$ invertible matrix then for any $\vec{b} \in R^{n}$ the equation $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$.

3 Properties of inverse

These are listed in Theorem 6 in text

Proposition 3.1 - If A is invertible then so is A^{-1} and $\left(A^{-1}\right)^{-1}=A$

- If A and B are invertible $n \times n$ matrices, then $A B$ is also invertible and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- If A is invertible then so is A^{T} and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

4 Elementary Matrices

An elementary matrix allows us to express the process of a row operation by matrix multiplication.

Definition 4.1 An elementary matrix is one obtained from an identity matrix by performing a single row operation.

Proposition 4.2 If we obtain B from A by a single row operation, and if E is the elementary matrix corresponding to this row operation. Then $B=E A$

Example 4.3 Suppose we take $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and add twice the first row to the second row. We then get $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 6 & 9 & 12\end{array}\right)$.

The corresponding elementary operation is $E=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ and we can check that

$$
B=E A
$$

This is Theorem 7 of the text

Proposition 4.4 An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_{n}. Also any sequence of row operations that reduces A to I_{n} also transforms I_{n} to A^{-1}.

Remark 4.5 For the simple case that one row operation reduces A to I_{n} then it also transforms I_{n} to A^{-1}. Let E the the corresponding elementary matrix. Then

$$
E A=I
$$

Take the inverse of both sides and use the fact that $I^{-1}=$ I we get

$$
A^{-1} E^{-1}=(E A)^{-1}=I^{-1}=I
$$

So

$$
\left(A^{-1} E^{-1}\right) E=I E
$$

or

$$
A^{-1}=A^{-1} I=\left(A^{-1}\left(E^{-1}\right) E\right)=I E=E
$$

5 Finding inverses, if they exist

Remark 5.1 Take a square matrix A and make an augmented matrix $M=(A I)$. Row reduce M.

IF M has the form $M=(I B)$, then A does have an inverse and $A^{-1}=B$. IF M ends up with a row of zeros then A does not have an inverse.

Example 5.2 We can calculate that the inverse of $\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right)$
is $\left(\begin{array}{ccc}-1 & \frac{1}{8} & \frac{5}{8} \\ -1 & \frac{1}{4} & \frac{1}{4} \\ 1 & \frac{1}{8} & -\frac{3}{8}\end{array}\right)$ since when we row reduce

$$
\left(\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
3 & -2 & 1 & 0 & 0 & 1
\end{array}\right)
$$

we get

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & \frac{1}{8} & \frac{5}{8} \\
0 & 1 & 0 & -1 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 1 & 1 & \frac{1}{8} & -\frac{3}{8}
\end{array}\right) .
$$

Example 5.3 On the other hand we deduce that $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ has no inverse since when we row reduce

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
4 & 5 & 6 & 0 & 1 & 0 \\
7 & 8 & 9 & 0 & 0 & 1
\end{array}\right)
$$

we get

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & -\frac{8}{3} & \frac{5}{3} \\
0 & 1 & 2 & 0 & \frac{7}{3} & -\frac{4}{3} \\
0 & 0 & 0 & 1 & -2 & 1
\end{array}\right)
$$

6 Problems

Question 6.1 Let $M_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin (-\theta) \\ \sin \theta & \cos \theta\end{array}\right)$. Show, using Definition 1.1 that $M_{\theta}^{-1}=M_{-\theta}$.

Question 6.2 Following the argument of Remark 4.5 show that For the simple case that two row operations reduces A to I_{n} then they also transform I_{n} to A^{-1}.

Question 6.3 Use the method of Remark 5.1 to derive the formula for the inverse given in Proposition 1.4.

