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1 Algebra and Geometry

We think of geometric things as subsets of the plane or of

three dimensional space. Points are either ordered pairs

of numbers or ordered triples. Linear algebra gives us a

simple and powerful way of thinking about these points

as algebraic so that we can “add points” and do multi-

plications.

2 n-space

Definition 2.1 We define real n-dimensional space

to be the set of ordered n-tuples of real numbers and

denote this by Rn.

Remark 2.2 Often we will denote a point of Rn by

(x1, x2, . . . , xn).

1. So R1, also denoted R is the set of real numbers.

2. And R2 is all ordered pairs of real numbers (x1, x2),

sometimes simply called the plane or 2-dimensional

space.

2



3. AndR3 is all ordered triples of real numbers (x1, x2, x3),

sometimes simply called the space, or 3-dimensional

space.

4. AndR4 is all ordered 4-tuples of real numbers (x1, x2, x3, x4),

is called 4-dimensional space.

5. AlsoR5 is all ordered 5-tuples of real numbers (x1, x2, x3, x4, x5),

is called 5-dimensional space.

6. . . . and on and on . . . .

Remark 2.3 When we talk about “the” plane, we gen-

erally will be referring to R2 rather that “a” plane in

R3.

3 Vectors in Rn

Definition 3.1 A vector in Rn is an n-tuple, called

an n-dimensional vector, of numbers which we

write as a matrix of one column.
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So we represent the n-tuple (x1, x2, . . . , xn) by


x1
x2
...

xn

.

The number xi is called the i-th component of

the vector. The number n is called the dimension

of the vector.

In these notes, on the blackboard, and in tests we use

the notation −→v to indicate v is a vector (the text uses

bold font).

Two vectors are equal if they have the same dimension

and components of one equal components of the other:

Definition 3.2 Two vectors

−→u =


u1
u2
...

um

 and −→v =


v1
v2
...

vn


are equal if m = n and ui = vi for 1 ≤ i ≤ n.

Remark 3.3 A vector is a 1×n matrix. But since there

is only one column, we will not use the double subscript
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notation. Instead of writing

−→v =


x1
x2
...

xn

 instead of


x11
x21

...

xn1


Another way to write this is to say −→v = (xi) where

1 ≤ i ≤ n.

3.1 Addition of vectors

Two vectors of the same dimension n can be added:

Definition 3.4 If −→u =


u1
u2
...

un

 and −→v =


v1
v2
...

vn


Then the vector sum −→u +−→v is also an n-dimensional

vector defined: −→u +−→v =


u1 + v1
u2 + v2

...

un + vn

.

Example 3.5 For example
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 1

2

3

 +

 1

0

−1

 =

 2

2

2


and  1

2

3

 +

 a

b

3

 =

 a + 1

b + 2

6

 .

Definition 3.6 A vector is called a zero vector if

all of its coordinates are zero. Where the dimension

is understood we will use the notation
−→
0 for the zero

vector.

3.2 Scalar multiplication

Definition 3.7 If −→u =


u1
u2
...

un

 and c is any number

then the scalar product c−→u is the vector defined by:
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If c−→u =


cu1
cu2

...

cun

.

Remark 3.8 NOTE CAREFULLY: For addition we add

two vectors (of same dimension) and get another vector

(of that dimension). With a scalar product we combine

two very different things : a vector and a number—what

we get is a vector.

Example 3.9

2

 1

2

3

 =

 2

4

6

 ,−1

 1

2

3

 =

 −1

−2

−3

 , and 0

 1

2

3

 =

 0

0

0


Definition 3.10 If −→u is any vector −−→u = (−1)−→u .

3.3 Graphic view of vector in the plane and space

Graphically, we depict a vector in the plane or space as

an arrow (except the zero vector). There are two ways to

do this. In the plane the origin is (0, 0), in space (0, 0, 0)
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• (Based arrow method) Depict the vector as an arrow

with point of arrow at point whose coordinates are

the vector coordinates and with the “tail” point of

the arrow at the origin.

• (Free vector method) Depict the vector as any arrow

which is parallel to that obtained from the based ar-

row method.

Remark 3.11 The text uses only the based arrow method.

In multi-variable calculus, physics and many kinds of en-

gineering, you need the other as well.

3.4 Geometric view of vectors in R2

Given two non-zero vectors −→u =

(
a

b

)
and −→v =

(
c

d

)
we can describe the sum −→u + −→u = −→v =

(
a + c

b + d

)
as

follows:

• (Based arrow method) Assume the points (0, 0), (a, b) and (c, d)

do not lie in a line. Then these three points deter-

mine a unique parallelogram P with one angle α at

(0, 0). Then the point (a+c, b+d) will be the vertex
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point of P diagonally opposite the vertex of α. In

other words −→u +−→u is represented by this diagonal.

• (Free vector method) Assume the free vectors do not

lie in parallel lines. Draw −→u as an arrow from a

point A to point B and draw −→v as a free vector

which starts at B and goes to C. The vector −→u +−→u
can be depicted as an arrow that goes from A to C.

Remark 3.12 It is often better to use the free method

when dealing with a sum of three vectors or more.

3.5 Geometric view of vectors R3

Three points in space, if they do not lie on a line, deter-

mine a plane H . The two vectors correspond to arrows

that “lie” in that H . Once we have this we use either of

the methods described in Section 3.4.

3.6 Vectors in R4

It is difficult for many to visualize R4, however addition

of 4-dimensional vectors only really needs visualization in

two dimensions.
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In later sections we will be able to articulate and show

that three points in R4, if they do not lie on a line, de-

termine a two dimensional subset H which is “just like

a plane” . The two vectors correspond to arrows that

“lie” in that H . Once we have this we use either of the

methods described in Section 3.4.

4 Algebraic Properties of Vector Addition and

Scalar Multiplication

Proposition 4.1 Suppose −→u ,−→v ,−→w are vectors in Rn

and c, d are numbers.

1. −→u +−→v = −→v +−→u

2. (−→u +−→v ) +−→w = −→u + (−→v +−→w )

3. −→u +
−→
0 =

−→
0 +−→u = −→u

4. −→u + (−−→u ) = −−→u +−→u =
−→
0

5. c(−→u +−→v ) = c−→u + c−→v

6. (c + d)−→u = c−→u + d−→u

7. c(d−→u ) = (cd)−→u

8. 1−→u = −→u
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Remark 4.2 We will write −→u + (−−→u ) as −→u −−→u .

5 Linear Combinations

Definition 5.1 Given a set of vectors −→v1 ,−→v1 , . . . ,−→vp
and numbers c1, c2, . . . cp the vector

c1
−→v1 + c2

−→v1 + · · · + cp
−→vp

is called a linear combination of the vectors −→v1 ,−→v1 , . . . ,−→vp
with weights c1, c2, . . . cp

Example 5.2 Let us see if

 1

2

3

 is a linear combina-

tion of

 −1

1

2

 and

 2

1

1


If it is a linear combination, we can find numbers c1

and c2 such that

 1

2

3

 = c1

 −1

1

2

 + c2

 2

1

1


11



this means that 1

2

3

 = c1

 −c1 + 2c2
c1 + c2
2c1 + c2


The given vector is a linear combination if we can solve

the following set of equations:

−c1 + 2c2 = 1

c1 + c2 = 2

2c1 + c2 = 3

We use our methods to solve this system. The aug-

mented matrix is:  −1 2 1

1 1 2

2 1 3


The row reduced echelon form of this is 1 0 1

0 1 1

0 0 0


and we conclude that the given vector is a linear combi-

nation if we use weights c1 = 1, c2 = 1.
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6 The span of a set of vectors

Definition 6.1 Given vectors −→v1 ,−→v1 , . . . ,−→vp in Rn,

the span of −→v1 ,−→v1 , . . . ,−→vp (or the subset of Rn

spanned by −→v1 ,−→v1 , . . . ,−→vp) is the set of all linear

combinations of the vectors −→v1 ,−→v1 , . . . ,−→vp .

We denote this by Span{−→v1 ,−→v1 , . . . ,−→vp}.

Example 6.2 The calculation of Example 5.2 shows that 1

2

3

 is in the span of

 −1

1

2

 and

 2

1

1

.

On the other hand,

 3

2

1

 is in not in the span of

 −1

1

2

 and

 2

1

1

.

This can be seen since when we row reduce −1 2 3

1 1 2

2 1 1
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we get  1 0 0

0 1 0

0 0 1


.

This means there are no solutions to the vector equa-

tion

 3

2

1

 = c1

 −1

1

2

 + c2

 2

1

1
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